$CaSiO_3$- 석류석 상의 탄성 특성

Elastic Properties of the $CaSiO_3$ - Garnet Phase

  • 발행 : 2004.09.01

초록

천연산 헤덴버자이트(Ca,Fe) $SiO_3$ 시료에 대해 일정한 압력 하에서 약 $1200^{\circ}C$ 정도로 가열한 후, x-선 회절실험을 시행하였더니 14~24 GPa 압력구간에서 등축정계에 속하는 석류석 상이 관찰 되었다. $CaSiO_3$-석류석 상에 대한 체적탄성률 = 155 GPa 및 $V_{\Phi}$ = 6.58 km/sec 및 기타 탄성특성을 유사구조의 계통과 $KV_{m}$ = 상수 및 $V_{\Phi}$$M^{$\frac{1}{2}$}$ = 상수 관계식을 이용하여 추정하였다 석류석 상은 천연산 헤덴버자이트에 상당량 포함되어 있는 Mn과 많은 미량원소에 의해 상당히 넓은 압력에 걸쳐 안정영역을 구축하며, 비가역적 반응을 보인다. Ca의 포용광물로 $CaSiO_3$-석류석 상은 맨틀전이대의 주요 광물상의 하나로 간주할 수 있다.

$CaSiO_3$-garnet phase was observed in the phase transformation sequences on a natural hedenbergite, (Ca, Fe)$ SiO_3$ between 14 and 24 GPa when quenched from $~1200^{\circ}C$. Bulk modulus K = 155 GPa, $V_{\Phi}$ = 6.58 km/sec and other elastic properties of the $CaSiO_3$-garnet were obtaiend on the basis of the systematics of structural analogs in varius garnet phases and relationship of $KV_{m}$ = constant and $V_{\Phi}$$M^{$\frac{1}{2}$}$ = constant. The quenchable garnet phase apears to be stabilized by the considerable amount of Mn and other cations, and shows a wide stability range. As one of the host minerals of Ca composition, $CaSiO_3$-garnet would be one of the important mineral phases in the mantle transition region.

키워드

참고문헌

  1. Anderson, D.L. (1989) Composition of the Earth. Science, 243, 367-370.
  2. Anderson, D.L. and Bass, J.D. (1986) Transition region of the Earth's upper mantle. Nature, 320 (6060), 321-328.
  3. Babuska, V., Fiala, J., Kumazawa, M., Ohno, I., and Sumino, Y. (1978) Elastic properties of garnet solid-solution series. Phys. Earth & Planet. Int., 16, 157-176.
  4. Bass, J.D. and Anderson, D.L. (1984) Composition of the upper mantle, geophysical tests of two petrological models. Geophys. Res. Lett., 11, 237-240.
  5. Cameron, M., Sueno, S., Prewitt, C.T., and Papike, J.J. (1973) High-temperature crystal chemistry of acmite, diopside, hedenbergite, jadeite, spodumene and ureyite. Am. Mineral., 58, 594-618.
  6. Chen, G., Cooke Jr. J.A. , Gwanmesia, G.D., and Liebermann, R.C. (1999) Elastic wave velocities of $Mg_3Al_2Si_3O_{12}$-pyrope garnet to 10 GPa. Am. Mineral., 84, 384-388.
  7. Coleman. L.C. (1977) Ringwoodite and majorite in the Catherwood meteorite. Can. Mineral., 15, 97-101.
  8. Dietrich, P. and Arndt, J. (1982) Effects of pressure and temperature on the physical behavior of mantle-relevant olivine, orthopyroxene and garnet. In: Schreyer, W. (ed). High-pressure researches in geosciences, 293-306.
  9. Finger, L.W. and Ohashi, Y. (1976) The thermal expansion of diopside to $800^{\circ}C$ and a refinement of a crystal structure at $800^{\circ}C$. Am. Mineral., 61, 303-310.
  10. Fujino, K., Momoi. H., Sawamoto, H., and Kwnazawa, M. (1986) Crystal structure and chemistry or $MnSiO_3$ tetragonal garnet, Am. Mineral., 71, 781-785.
  11. Galasso, F.S. (1970) Structure and properties or inorganic solids, International series of monograph in solid state physics, 7, Pergamon Press, 247-248.
  12. Jeanloz, R. (1981) Majoritc: Vibrational and compressional properties of a high-pressure phase. J. Geophys. Res., 86, 6171-6179.
  13. Kandelin, J. and Weidner, D.J. (1988) Elastic properties of hedenbergite. J. Geophys. Res., 93, 1063-1072.
  14. Kim, Y.H., Ming, L.C., and Manghnani, M.H. (1989) A study of phase transformation in hedenbergite to 40 GPa at $1200^{\circ}C$. Phys. Chem. Minerals, 16, 757-762.
  15. Kim, Y.H. (1994) A study of phase transitions on natural diopside under high pressure. Jour. Geol. Soc. Korea, 30(2), 159-167.
  16. Klein, C. and Hurlhut Jr., C.S. (1985) Manual of Mineralogy, after JD Dana, .Iohn Wiley & Sons. NY, pp 596.
  17. Liebermann, R.C. (1974) Elasticity of pyroxene-garnet and pyroxene-ilmenite phase transfonnations in germanates. Phys Earth & Planet. Int., 8, 361-374.
  18. Mason, B., Nelson, J., and White, Jr. J.S. (1968) Olivine-garnet transformation in a meteorite. Science, 160, 66-67.
  19. Ming, L.C. and Bassett, W.A. (1974) Laser heating in the diamond anvil press up to $2000^{\circ}C$ sustained and $3000^{\circ}C$ pulsed at pressures up to 260 kilobars. Rev. Sci. Instrum., 45, 1115-1118.
  20. Novak, G.A and Gibbs, G.V. (1971) The crystal chemistry of the silicate garnets. Am. Mineral., 56, 791-825.
  21. Prewitt, C.T. and Sleight, A.W. (1969) Garnet-like structures of high-pressure cadmium germanate and calcium germanate. Science, 163, 386-387.
  22. Ringwood, A.E. and Major, A. (1967) Some highpressure transformations of geophysical significance. Earth & Planet. Sci. Lett., 2, 106-110.
  23. Sawamoto, H. (1987) Phase diagram or $MgSiO_3$ or pressures up to 24 GPa and temperatures up to $2200^{\circ}C$: phase stability and properties or tetragonal garnet. In: Manghnani, M.H. and Syono, Y., (eds). High-pressure research in mineral physics, Terra Scientific Pub Co. Japan/Am. Geophys. Union, 209-219.
  24. Sharma, S.K., Yoder, H.S., and Jr., Cooney, T.F. (1988) Raman spectral study or acmite and hedenbergite in crystalline and glassy states (abstract). Trans. Am. Geophys. Union, 69, 1482.
  25. Smith, J. V. and Mason, B. (1970) Pyroxene-garnet transformation in Coorara meteorite. Science, 168, 832-833.
  26. Vaidya, S.N. Bailey, S., Pasternak, T., and Kennedy G.C. (1973) Compressibility of fifteen minerals to 45 kilobars. J. Geophys. Res., 78, 6893-6898.
  27. Veblen, R. and Burnham, C.W. (1970) The crystal structure of hedenbergite and ferrosilite. Can. Mineral., 10, 147.
  28. Yagi, T., Akaoki , M., Shimomura, O., Tamai, H., and Akimoto, S. (1987) High pressure and high temperature equations or state of majorite. In: Manghnani, M.H. and Syono, Y. (eds). High-pressure research in mineral physics, Terra Scientific Pub Co. Japan/Am. Geophys. Union, 141-148.