Rotationally Invariant Space-Time Trellis Codes with 4-D Rectangular Constellations for High Data Rate Wireless Communications

  • Sterian, Corneliu Eugen D. (Polytechnic University of Bucharest) ;
  • Wang, Cheng-Xiang (Department of Information and Communication Technology, Faculty of Engineering and Science, Agder University College) ;
  • Johnsen, Ragnar (Department of Information and Communication Technology, Faculty of Engineering and Science, Agder University College) ;
  • Patzold, Matthias (Department of Information and Communication Technology, Faculty of Engineering and Science, Agder University College)
  • Published : 2004.09.01

Abstract

We demonstrate rotationally invariant space-time (ST) trellis codes with a 4-D rectangular signal constellation for data transmission over fading channels using two transmit antennas. The rotational invariance is a good property to have that may alleviate the task of the carrier phase tracking circuit in the receiver. The transmitted data stream is segmented into eight bit blocks and quadrature amplitude modulated using a 256 point 4-D signal constellation whose 2-D constituent constellation is a 16 point square constellation doubly partitioned. The 4-D signal constellation is simply the Cartesian product of the 2-D signal constellation with it-self and has 32 subsets. The partition is performed on one side into four subsets A, B, C, and D with increased minimum-squared Euclidian distance, and on the other side into four rings, where each ring includes four points of equal energy. We propose both linear and nonlinear ST trellis codes and perform simulations using an appropriate multiple-input multiple-output (MIMO) channel model. The 4-D ST codes constructed here demonstrate about the same frame error rate (FER) performance as their 2-D counterparts, having however the added value of rotational invariance.

Keywords

References

  1. V.Tarokh, N. Seshadri, and A. R. Calderbank, 'Spacetime codes for high data rate wireless communications: Performance criterion and code construction,' IEEE Trans. Inform. Theory, vol. 44, pp. 744-765, Mar. 1998 https://doi.org/10.1109/18.661517
  2. A. F. Naguib et al., 'A spacetime coding modem for high data rate wireless communications,' IEEE J. Select. Areas Commun., vol. 16, pp. 1459-1478, Oct. 1998 https://doi.org/10.1109/49.730454
  3. V. Tarokh et al., 'Space-time codes for high data rate wireless communications: Performance criteria in the presence of channel estimation errors, mobility, and multiple paths,' IEEE Trans. Commun., vol. 47, pp. 199-207, Feb. 1999 https://doi.org/10.1109/26.752125
  4. V. Tarokh et al., 'Combined array processing and space time coding,' IEEE Trans. Inform. Theory, vol. 45, pp. 1121-1128, May 1999. https://doi.org/10.1109/18.761255
  5. A. F. Naguib, N. Seshadri, and A. R. Calderbank, 'A space-time coding and signal processing for high data rate wireless communications,' IEEE Signal Processing Mag., vol. 17, pp. 76-92, May 2000 https://doi.org/10.1109/79.841731
  6. S. M. Alamouti, 'A simple transmit diversity technique for wireless communications,' IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998
  7. H. Jafarkhani and N. Seshadri, 'Superorthogonal space time trellis codes,' IEEE Trans. Inform. Theory, vol. 49, pp. 937-950, Apr. 2003 https://doi.org/10.1109/TIT.2003.809607
  8. B. M. Hochwald and T. L. Marzetta, 'Unitary space time modulation for multiple antenna communications in Rayleigh flat fading,' IEEE Trans. Inform. Theory, vol. 46, pp. 543-564, Mar. 2000 https://doi.org/10.1109/18.825818
  9. B. M. Hochwald and W. Sweldens, 'Differential unitary space-time modulation,' IEEE Trans. Commun., vol. 48, pp. 2041-2052, Dec. 2000 https://doi.org/10.1109/26.891215
  10. B. L. Hughes, 'Differential space-time modulation,' IEEE Trans. Inform. Theory, vol. 46, pp. 2567-2578, Nov. 2000 https://doi.org/10.1109/18.887864
  11. B. L. Hughes, 'Optimal space-time constellations from groups,' IEEE Trans. Inform. Theory, vol. 49, pp. 401-410, Feb. 2003 https://doi.org/10.1109/TIT.2002.807283
  12. B. Hassibi and B. M. Hochwald, 'How much training is needed in multiple antenna wireless links?' IEEE Trans. Inform. Theory, vol. 49, pp. 951-963, Apr. 2003 https://doi.org/10.1109/TIT.2003.809594
  13. E. Biglieri, J. Proakis, and S. Shamai, 'Fading channels: Information theoretic and communications aspects,' IEEE Trans. Inform. Theory, vol. 44, pp. 2619-2692, Oct. 1998 https://doi.org/10.1109/18.720551
  14. E. Biglieri, G. Caire, and G. Taricco, 'Limiting performance of block fading channels with multiple antennas,' IEEE Trans. Inform. Theory, vol. 47, pp. 1273-1289, May 2001 https://doi.org/10.1109/18.923715
  15. M. Patzold, Mobile Fading Channels, Chichester: John Wiley & Sons, 2002
  16. A. Burr, Modulation and Coding for Wireless Communications, New York: Prentice-Hall, 2001
  17. B. Vucetic and J. Yuan, Space Time Coding, Chichester: John Wiley & Sons, 2003
  18. H. EI Gamal and M. O. Damen, 'Universal space time coding,' IEEE Trans. Inform. Theory, vol. 49, pp. 1097-1119, May 2003 https://doi.org/10.1109/TIT.2003.810644
  19. D. Divsalar and M. K. Simon, 'The design of trellis coded MPSK for fading channels: Set partitioning for optimum code design,' IEEE Trans. Commun., vol. 36, pp. 1013-1021, Sept. 1988 https://doi.org/10.1109/26.7513
  20. D. Divsalar and M. K. Simon, 'Multiple trellis coded modulation (MTCM),' IEEE Trans. Commun., vol. 36, pp. 410-419, Apr. 1988 https://doi.org/10.1109/26.2765
  21. E. Biglieri et al., Introduction to Trellis-Coded Modulation with Applications, New York: Macmillan Publishing Company, 1991
  22. L. F. Wei, 'Trellis-coded modulation with multidimensional constella-tions,' IEEE Trans. Inform. Theory, vol. 33, pp. 483-501, July 1987 https://doi.org/10.1109/TIT.1987.1057329
  23. C. E. D. Sterian, F. Laue, and M. Patzold, 'Trellis coded quadrature amplitude modulation with 2N-dimensional constellations for mobile radio channels,' IEEE Trans. Veh. Technol., vol. 48, pp. 1475-1487, Sept. 1999 https://doi.org/10.1109/25.790523
  24. C. E. D. Sterian, 'Weitype trellis coded modulation with 2N-dimensional rectangular constellation for N not a power of two,' IEEE Trans. Inform. Theory, vol. 43, pp. 750-758, Mar. 1997 https://doi.org/10.1109/18.556135
  25. C.-X, Wang and M. Patzold, 'Methods of generating multiple uncorrelated Rayleigh fading processes,' in Proc. IEEE VTC 2003 Spring, Jeju, Korea, Apr. 2003, pp. 510-514
  26. C. E. D. Sterian, 'Exact formulas for computing the energy of 'square' and 'cross' two-dimensional rectangular signal constellations,' European Trans. Telecommun., vol. 8, pp. 547-549, Nov./Dec. 1997 https://doi.org/10.1002/ett.4460080602