• Title/Summary/Keyword: multidimensional constellations

Search Result 3, Processing Time 0.015 seconds

TCM Without Constellation Expansion Penalty

  • Kaminsky, Edit J.;Ayo, James
    • Journal of Communications and Networks
    • /
    • v.4 no.2
    • /
    • pp.90-96
    • /
    • 2002
  • We present a family of constant-amplitude constellations of even dimensions 8 and above. These constellations allow trellis coded modulation to be implemented without the usual penalty paid for constellation expansion. The new constellations are generated by concatenating either n QPSK points or n QPSK points rotated by 45 degrees, for any n $\geq$ 4. Our constellations double the number of points available for transmission without decreasing the distance between points and without increasing the average or peak energies, introducing asymmetry, or increasing the modulation level. Effective gains of 2.65 dB with minimum complexity through 6.42 dB with moderate complexity are demonstrated using the 8D constellation.

Rotationally Invariant Space-Time Trellis Codes with 4-D Rectangular Constellations for High Data Rate Wireless Communications

  • Sterian, Corneliu Eugen D.;Wang, Cheng-Xiang;Johnsen, Ragnar;Patzold, Matthias
    • Journal of Communications and Networks
    • /
    • v.6 no.3
    • /
    • pp.258-268
    • /
    • 2004
  • We demonstrate rotationally invariant space-time (ST) trellis codes with a 4-D rectangular signal constellation for data transmission over fading channels using two transmit antennas. The rotational invariance is a good property to have that may alleviate the task of the carrier phase tracking circuit in the receiver. The transmitted data stream is segmented into eight bit blocks and quadrature amplitude modulated using a 256 point 4-D signal constellation whose 2-D constituent constellation is a 16 point square constellation doubly partitioned. The 4-D signal constellation is simply the Cartesian product of the 2-D signal constellation with it-self and has 32 subsets. The partition is performed on one side into four subsets A, B, C, and D with increased minimum-squared Euclidian distance, and on the other side into four rings, where each ring includes four points of equal energy. We propose both linear and nonlinear ST trellis codes and perform simulations using an appropriate multiple-input multiple-output (MIMO) channel model. The 4-D ST codes constructed here demonstrate about the same frame error rate (FER) performance as their 2-D counterparts, having however the added value of rotational invariance.

QoS-Oriented Solutions for Satellite Broadcasting Systems

  • Vargas, Aharon;Gerstacker, Wolfgang H.;Breiling, Marco
    • Journal of Communications and Networks
    • /
    • v.12 no.6
    • /
    • pp.558-567
    • /
    • 2010
  • In this paper, we analyze the capability of satellite broadcasting systems to offer different levels of quality of service (QoS). We focus on the European telecommunications standards institute satellite digital radio and digital video broadcasting satellite handheld (DVB-SH) standards, which have recently been proposed for satellite broadcasting communications. We propose a strategy to provide different levels of QoS for the DVB-SH standard on the basis of an extension of the interleaving scheme, referred to as molded interleaver, which supports low latency service requirements for interactive services. An extensive analysis based on laboratory measurements shows the benefits of this solution. We also present a multilevel coding (MLC) scheme with multistage decoding designed for broadcasting communications as an alternative to the existing standards, where services with different levels of QoS are provided. We present a graphical method based on mutual information for the design and evaluation of MLC systems used for broadcasting communications. Extensive simulations for a typical satellite channel show the viability of the proposed MLC scheme. Finally, we introduce multidimensional constellations in the proposed MLC scheme in order to increase the number of different protection levels.