Using Central Manifold Theorem in the Analysis of Master-Slave Synchronization Networks

  • Published : 2004.09.01

Abstract

This work presents a stability analysis of the synchronous state for one-way master-slave time distribution networks with single star topology. Using bifurcation theory, the dynamical behavior of second-order phase-locked loops employed to extract the synchronous state in each node is analyzed in function of the constitutive parameters. Two usual inputs, the step and the ramp phase perturbations, are supposed to appear in the master node and, in each case, the existence and the stability of the synchronous state are studied. For parameter combinations resulting in non-hyperbolic synchronous states the linear approximation does not provide any information, even about the local behavior of the system. In this case, the center manifold theorem permits the construction of an equivalent vector field representing the asymptotic behavior of the original system in a local neighborhood of these points. Thus, the local stability can be determined.

Keywords

References

  1. W. C. Lindsey et al., 'Network syncronization,' Proc. IEEE, vol. 73, no 10,pp. 1445-1467, 1972
  2. G. Shao, F. Berman, and R. Wolski, 'Master/slave computing on the grid,'in Proc. IEEE 21st COMPSAC, 2000
  3. W. C. Lee et al., 'The distributed controller architecture for a masterarm and its application to teleoperation with force feedback,' in Proc. IEEE International Conference on Robotics & Automation, Detroit, MichiganEUA, 1999,pp.213-218
  4. S. Sohail and G. Raj, 'Replication of multimedia data using master slave architecture,' in Proc. IEEE 21st COMPSAC, 1997
  5. L. H. A. Monteiro, R. V. dos Santos, and J. R. C. Piqueira, 'Estimating the critical number of slave nodes in a single chain PLL network,' IEEE Comun. Lett., vol. 7, no. 9, pp. 449-450, 2003 https://doi.org/10.1109/LCOMM.2003.817322
  6. L. H. A Monteiro, Sistemas Dinamicos, Sao Paulo-Brazil, Editora Livraria da Fisica, 2002
  7. J. R. C. Piqueira and L. H. A. Monteiro, 'Considering secondharmonic terms in the operation of the phase detector for second order phaselocked loop,' IEEE Trans. Circuits Syst. I, vol. 50, no. 6, pp. 805-809, 2003 https://doi.org/10.1109/TCSI.2003.812612
  8. T. Endo and L. A. Chua, 'Chaos from phase-locked loops,' IEEE Trans. Circuits Syst., vol. 35, pp. 987-1003, 1988 https://doi.org/10.1109/31.1845
  9. T. Endo and L. A. Chua, 'Chaos from phase-locked loops, part II: High dissipation case,' IEEE Trans. Circuits Syst., vol. 36, pp. 225-263,1989
  10. T. Endo and L. A. Chua, 'Bifurcation diagrams and fractal basin boundaries of phase locked loop circuits,' IEEE Trans. Circuits Syst., vol. 37, pp. 534-540, 1990 https://doi.org/10.1109/31.52756
  11. F. M. A. Salam, J. E. Marsden, and P. P. Varaya, 'Chaos and Arnold diffusion in dynamical systems,' IEEE Trans. Circuits Syst., vol. 30, pp. 697-708, 1983 https://doi.org/10.1109/TCS.1983.1085413
  12. J. Guckenheimer and P. J. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifucation of Vector Fields, New York-EUA, SpringerVerlag, 1983
  13. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, New York-EUA, Springer-Verlag, 1990
  14. K. Ogata, Modern Control Engineering, New Jersey, Prentice-Hall, 1997
  15. L. H. A. Monteiro, D. N. Favaretto Filho, and J. R. C. Piqueira, 'Bifurcation analysis for third order phase locked loops,' IEEE Signal Processing Lett., vol. 11, no. 5, pp. 494-496, 2004 https://doi.org/10.1109/LSP.2004.824064
  16. J. Carr, Applications of Centre Manifold Theory, New York-EUA, Springer-Verlag, 1981