A Small Swing Domino Logic for Low Power Consumption

저전력 소비를 위한 저전압 스윙 도미노 로직

  • 양성현 (LG전자 SIC DNI 그룹) ;
  • 김두환 (충북대학교 정보통신공학과 컴퓨터정보통신연구소) ;
  • 조경록 (충북대학교 정보통신공학과 컴퓨터정보통신연구소)
  • Published : 2004.11.01

Abstract

In this paper, we propose a new small swing domino logic for low-power consumption. To reduce the power consumption, both the precharge node and the output node swing the range from 0 to $V_{REF}$- $V_{THN}$, where $V_{REF}$=VDD-n $V_{THN}$ (n=1, 2, and 3). This can be done by adding the inverter structure on domino logic that allows a full swing or a small swing on its input terminal without leakage current. Compared to previous works, the proposed structure can save the power consumption of more than 30% for n=0, 1, 2, and 3 in the equation of $V_{REF}$=VDD-n $V_{THN}$. A multiplier applying the proposed domino logic has been designed and fabricated using a 0.35-${\mu}{\textrm}{m}$ n-well CMOS process under 3.3-V supply voltage. Compared with other previous works, it shows a 30% power reduction and a better feature in power-delay product.lay product.

본 논문에서는, 저전력 소비를 위한 새로운 저전압 스윙 도미노 로직 회로를 제안한다. 전력 소비를 줄이기 위해, 도미노 로직의 예비충전(precharge) 노드와 출력 노드가 0V부터 V/sub REF/-V/sub TH/까지의 범위에서 스윙하도록 설계하였다. 여기서, V/sub REF/=VDD-nV/sub TH/ (n=0, 1, 2, 3)로 정의되며 설계자는 요구되는 속도와 전력 소비 특성을 감안하여 n 값을 설정할 수 있다. 이와 같은 특성은 누설 전류 없이 저전압 입력을 받을 수 있는 인버터의 구조에 의해 얻어진다. 제안된 도미노 로직을 적용하여 4×4 Braun 곱셈기를 설계하였고 공급전압 3.3V를 갖는 0.35㎛ n-well CMOS 공정으로 제작하였다. 제작된 칩은 기존 회로들과 비교할 때, 30% 이상의 전력 감소효과를 나타내며 전력-지연 곱에서도 우수한 성능을 나타내었다.

Keywords

References

  1. A. Rjoub and O. Koufopavlou, Low-power domino logic multiplier using low-swing technique, in Proc. IEEE Int. Conf. Electronics, Circuits and Systems, vol. 2, pp. 45-48, 1998 https://doi.org/10.1109/ICECS.1998.814819
  2. E. D. Kyriakis-Bitzaros and S. S. Nikolaidis, Design of low power CMOS drivers based on charge recycling, in Proc. IEEE Int. Symp. Circuits and Systems, vol. III, pp. 1924-1927, 1997 https://doi.org/10.1109/ISCAS.1997.621527
  3. A. Rjoub and O. Koufopavlou, Low-swing/low power driver architecture, in Proc. IEEE Int. Conf. Electronics, Circuits and Systems, vol. 2, pp. 639-642, 1999 https://doi.org/10.1109/ICECS.1999.813188
  4. S. M. Kang, Accurate simulation of power dissipation in VLSI circuits, IEEE J. Solid State Circuits, vol. SC-21, no. 5, pp. 889-891, Oct. 1986 https://doi.org/10.1109/JSSC.1986.1052622
  5. S. M. Kang and Y. Leblebici, CMOS Digital Integrated Circuits: Analysis and Design, McGraw-Hill, 1996
  6. D. V. Campenhout, Mudge, and K. Sakallah, Timing verification of sequential domino circuits, in Proc. IEEE/ACM Int. Conf. Computer-Aided Design, pp. 127-132, 1996 https://doi.org/10.1109/ICCAD.1996.569418
  7. A. Rjoub, S. Nikolaidis, O. Koufopavlou, and T. Stouraitis, A new efficient low power bus architecture, in Proc. IEEE Int. Symp. Circuits and Systems, vol. III, pp. 1864-1867, 1997 https://doi.org/10.1109/ISCAS.1997.621512
  8. G. E. Sobelman and D. L. Raatz, Low-power multiplier design using delayed evaluation, in Proc. IEEE Int. Symp. Circuits and Systems, pp. 1564-1567, 1995 https://doi.org/10.1109/ISCAS.1995.523705
  9. H. Kawaguchi and T. Sakurai, A reduced dock-swing flip-flop (RCSFF) for 63% power reduction, IEEE J. Solid-State Circuits, vol. 33, pp. 807-811, no. 5, May 1998 https://doi.org/10.1109/4.668997
  10. A. D. Chandrakasan, et al, 'Low-power CMOS digital design,' IEEE J. Solid-State Circuits, vol. 27, no. 4, pp.473-483, Apr. 1992 https://doi.org/10.1109/4.126534
  11. D. Liu and C. Svensson, Power consumption estimation in CMOS VLSI chips, IEEE J. Solid-State Circuits, vol. 29, no. 6, Jun. 1994 https://doi.org/10.1109/4.293111
  12. C. Farnsworth, D. A. Edwards, and S. S. Sikand, Utilising dynamic logic for low power consumption in asynchronous circuits, in Pro. Int. Symp. Advanced Research in Asynchronous Circuits and Systems, pp. 186-194, 1994 https://doi.org/10.1109/ASYNC.1994.656311
  13. H. Kojima, S. Tanaka, and K. Sasaki, Half-swing clocking scheme for 75% power saving in clocking circuitry, IEEE J. Solid-State Circuits, vol. 30, pp. 432-435, Apr. 1995 https://doi.org/10.1109/4.375963
  14. R. Zimmermann and W. Fichtner, Low-power logic styles: CMOS versus pass-transistor logic, IEEE J. Solid-State Circuits, vol. 32, pp. 1079-1090, Jul. 1997 https://doi.org/10.1109/4.597298
  15. K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, Prentice Hall, 1999