DOI QR코드

DOI QR Code

Identification of Quantitative Trait Loci Associated with Leaf Length. Width and Length/width Ratio in Two Recombinant Inbred Lines of Soybean (Glycine max L.)

두 집단의 재조합 근친교잡 계통 (RIL) 콩에서 엽장과 엽폭 및 장폭비와 관련된 양적헝질 유전자좌 분석

  • Published : 2004.10.01

Abstract

The increasing apparent photosynthetic rate per leaf area may improve seed yield in soybean. Leaf area, length and width are related to the photosynthetic capability of the plant. In this study, two populations derived from the cross of Keunolkong, Shinpaldalkong and Iksanl0 were evaluated with simple sequence repeat (SSR) markers to identify length, width and length/width ratio of leaf. Leaf length/width ratio were significantly negative correlation with leaf width in K/S and K/I populations. In the K/S population, two minor QTLs for leaf length (LL) were found on LG Dlb+W and 1. Two QTLs on LG J and L were related to LL in K/I population. Two and three minor QTLs were identified in leaf width with total phenotypic variation of 13% and 18.04 in K/S and K/I populations, respectively. The leaf length/width ratio, two QTLs on LG I and L, and three QTLs on LG Cl, E and L were related to K/S and K/I populations, respectively. Thus it is assumed that the leaf traits are very much dependent on the genotype used and different breeding approach should be considered for the selection of favorite leaf traits in soybean breeding programs.

엽면적과 엽장 및 엽폭은 식물의 광합성 효율과 관련이 있다. 단위 엽면적당 광합성율을 증가는 콩에서 종실 수량을 증가시킨다 따라서 본 연구는 큰올콩과 신팔달콩 및 익산10호를 각각 교배하여 얻은 두 집단이 잎의 엽장과 엽폭 및 장폭비를 확인할 수 있는 SSR 마커를 선발하기 위하여 실시하였다. 잎의 장폭비는 두 집단에서 엽폭과 유의적인 부의 상관을 보였다. 엽장은 큰올콩/신팔달롱 조합에서 연관군 DIb+W와 L에서 두개의 작은 양적 형 질 유전자좌 (QTL)를 탐색하였으며, 큰올콩/익산10호 조합에서는 연관군 1와 L에서 두개 의 양적 형 질 유전자좌가 관련하였다. 엽폭은 큰올콩/신팔달콩 조합에서 2개, 큰올콩/익산10호 조합에서 3개의 양적형질 유전자좌가 관련하였으며 이들은 각각 전체 형질 변이의 13% 및 18.04%를 설명할 수 있었다. 장폭비는 큰올콩/신팔달콩 조합에서 연관군 I와 L에서 2개, 큰올콩/익산10호 조합에서 연관군 Cl과 E 및 L에서 3개의 양적형질 유전자좌가 관련하였다.

Keywords

References

  1. Chung, J., H. L. Babka, G. L. Graef, P. E. Staswick, D. J. Lee, P. B. Cregan, R. C. Shoemaker and J. E. Specht. 2003. The seed protein, oil and yield QTL on soybean linkag group I. Crop Sci. 43, 1053-1067 https://doi.org/10.2135/cropsci2003.1053
  2. Cregan, P. B., T. Jarvik, A. L. Bush, R. C. Shoemaker, K. G. Lark, A. L. Kahler, N. Kaya, T. T. VanToai, D. G. Lohnes, J. Chung and J. E. Specht. 1999. An integrated genetic linkage map of the soybean genome. Crop Sci. 39, 1464-1490 https://doi.org/10.2135/cropsci1999.3951464x
  3. Egli, D. B. 1998. Seed Biology and the Yield of Grain Crops. CAB International Wallingford, UK
  4. Ellis, R. H., H. Asumada, A. Qi and R. J. Summerfield. 2000. Effects of photoperiod and maturity genes on plant growth, partitioning radiation use efficiency, and yield in soyabean [Glycine max (L.) Merrill] 'Clark'. Annals of Botany 85, 335-343 https://doi.org/10.1006/anbo.1999.1072
  5. Fehr, W. R. and C. E. Caviness. 1977. Stages of soybean development. Spec. Rep. No. 80, Coop. Ext. Serv. Agric. and Home Econ. Expn. Stn., Iowa State Univ., Ames, IA
  6. Haldane, J. B. S. 1919. The combination of linkage values and the calculation of distances between the loci of linked factors. J. Genet. 8, 299-309
  7. Hesketh, J. D., W. L. Oregon, M. E. Hageman and D. B. Peters. 1981. Correlations among leaf carbon dioxide exchange rare areas and enzyme activity among soybean cultivars. Photosyn. Res. 2, 21-30 https://doi.org/10.1007/BF00036162
  8. Kang, S. T. 2002. Analysis of QTL for pod dehiscence based on molecular map in soybean [Glycine max (L.) Merr.]. Ph. D. Thesis. Dep. Agr. Gradu. School Seoul Nat. Univ. Korea
  9. Keim, P., B. W. Diers, T. C. Olson and R. C. Shoemaker. 1990. RFLP mapping in soybean association between marker loci and variation in quantitative traits. Genetics 126, 735-742
  10. Keim, P., T. C. Olson and R. C. Shoemake. 1988. A rapid protocol for isolating soybean DNA. Soybean Genet. Newsl. 15, 150-154
  11. Lugg, D. G. and T. R. Sinclair. 1979. A survey of soybean cultivars for variability in specific leaf weight. Crop Sci. 20, 191-196 https://doi.org/10.2135/cropsci1980.0011183X002000020011x
  12. Luquez, V. M. and J. J. Guiamet. 2001. Effects of the 'Stay Green' genotype GGd1d1d2d2on leaf gas exchange, dry matter accumulation and seed yield in soybean (Glycine max L. Merr.). Annals of Botany 87, 313-318 https://doi.org/10.1006/anbo.2000.1324
  13. Manly, K. F. and J. M. Olson. 1999. Overview of QTL mapping software and introduction to Map Manager QT. Mamm. Genome 10, 327-334 https://doi.org/10.1007/s003359900997
  14. Mansur, L. M., J. H. Orf, K. Chase, T. Jarvik, P. B. Cregan and K. G. Lark. 1996. Genetic mapping of agronomic traits using recombinant inbred lines of soybean (Glycine max (L.) Merr.). Crop Sci. 36, 1327-1336 https://doi.org/10.2135/cropsci1996.0011183X003600050042x
  15. Mansur, L. M., K. G. Lark, H. Kross and A. Oliveira. 1993. Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theor. Appl. Genet. 86, 907-913 https://doi.org/10.1007/BF00211040
  16. Mian, M. A. R., R. Wells, T. E. Carter Jr., D. A. Ashley and H. R. Boerma. 1998. RFLP tagging of QTLs conditioning specific leaf weight and leaf size in soybean. Theor. Appl. Genet. 96, 354-360 https://doi.org/10.1007/s001220050748
  17. Nelson, R. L. and L. E. Schweitzer. 1988. Evaluation soybean germplasm for specific leaf weight. Crop Sci. 28, 647- 649 https://doi.org/10.2135/cropsci1988.0011183X002800040016x
  18. Slafer, G. A. 1994. Genetic Improvement of Field Crop. Marcel Dekker, New York
  19. Thomson, A. T., R. L. Nelson and L. E. Schweitzer. 1995. Relationships among specific leaf weight, photosynthetic rate, and seed yield in soybean. Crop Sci. 35, 1575-1581 https://doi.org/10.2135/cropsci1995.0011183X003500060010x
  20. Wiebold, W. R., R. Shibles and D. E. Green. 1981. Selection for apparent photosynthesis and related leaf traits of soybean. Crop Sci. 21, 969-973 https://doi.org/10.2135/cropsci1981.0011183X002100060039x
  21. Wiebold, W. R. and W. J. Kenworthy. 1985. Leaflet expension rates for 15 soybean cultivars. Field Crop Res. 12, 271- 279 https://doi.org/10.1016/0378-4290(85)90074-7