열잠재성 촉매 개시제를 이용한 에폭시 수지의 경화거동 및 열안정성

Cure Behaviors and Thermal Stabilities of Epoxy Resins Initiated by Latent Thermal Catalyst

  • 박수진 (한국화학연구원 화학소재연구부) ;
  • 석수자 (한국화학연구원 화학소재연구부) ;
  • 이재락 (한국화학연구원 화학소재연구부) ;
  • 김영근 (케이피아이)
  • 발행 : 2004.10.01

초록

본 연구에서는 열잠재성 양이온 촉매인 N-benzylpyrazinium hexafluoroantimonate (BPH)와 benryl-2,5-dimethylpyrazinium hexafluoroantimonate (BDPH)를 합성하였고, 이관능성 에폭시 수지(diglycidylether of bisphenol A, DGEBA)에 개시제로 1 wt.%의 촉매를 혼합하여 DSC, NIR TGA 그리고 DMA를 이용하여 경화거동과 열안정성을 알아보았다. 촉매의 잠재특성은 $100∼180^{\circ}$의 반응 온도에 따른 전환율을 near-IR로부터 조사하였다. NIR 분석으로부터, BPH에 의한 에폭시 수지의 전환율은 BDPH와 비교하여 높은 전환율을 나타내는 것을 확인할 수 있었다. 그리고 TGA 분석 결과, 초기 열분해 온도(IDT)와 적분 열분해 온도(IPDT)에 입각하여 DGEBA/BDPH 시스템의 열안정성이 DGEBA/BPH 시스템보다 상대적으로 낮은 값을 나타냈다. 이는 BDPH 구조의 입체 장애로 인해 BPH보다 열안정성 인자이 더 낮게 측정된 것으로 판단된다.

In this work, two thermal latent catalysts, i.e., N-benzylpyrazinium hexafluoroantimonate (BPH) and benzyl-2,5-dimethylpyrazinium hexafluoroantimonate (BDPH), were synthesized. The cure behaviors and thermal stabilities of diglycidylether of bisphenol A (DCEBA) epoxy resins initiated by 1 wt.% of the catalysts were investigated by DSC, NIR, TCA, and DMA Latent properties of the catalysts were examined by conversion of epoxy resins using NIR from $100^{\circ}C$ to $180^{\circ}C$ From the resultes of near-IR, DGEBA/BPH system showed higher conversion than that of DGEBA/BDPH system. The thermal stabilities of DGEBA/BDPH system based on the initial decomposition temperature (IDT) and integral procedural decomposition (IPDT) were relatively lower than those of DCEBA/BPH system. These could be attributed to the hindered structure of BDPH, resulting in decreasing the thermal stability in the DGEBA/BDPH system.

키워드

참고문헌

  1. Polym. Compo. v.18 no.3 Cationic Polymerization of Diglycidyl Ether of Bisphenol a Resins Initiated by Benzylsulfonium Salts J. A. McGowen;L. J. Mathlas https://doi.org/10.1002/pc.10287
  2. Macromolecules v.34 no.22 Thermal Stability of Imidized Epoxy Blends Initiated by N-Benzylpyrazinium Hexafluoroantimonate Salt S. J. Park;H. C. Kim;H. I. Lee;D. H. Suh https://doi.org/10.1021/ma010792x
  3. Macromol. Rapid. Commun. v.25 no.6 Synthesis and Thermal Properties of Epoxidized Vegetable Oil S. J. Park;F. L. Jin;J. R. Lee https://doi.org/10.1002/marc.200300191
  4. Macromolecules v.33 no.7 Polymerization of Glycidyl Phenyl Ether with Benzyl Phenylphosphonates as Novel Thermally Latent Initiators M. S. Kim;F. Sanda;T. Endo https://doi.org/10.1021/ma9917390
  5. J. Polym. Sci. Polym. Chem. v.37 no.3 Cationic Polymerization Behavior of Isobutyl Vinyl Ether with Arenesulfonates as Non-salt-type Latent Thermal Initiators S. D. Lee;T. Takata;T. Endo https://doi.org/10.1002/(SICI)1099-0518(19990201)37:3<293::AID-POLA6>3.0.CO;2-I
  6. Radiation Phys. Chem. v.63 Advanced Curing Technologies using Photo and Electron Beam induced Cationic Polymerization J. V. Crivello https://doi.org/10.1016/S0969-806X(01)00476-5
  7. J. Polym. Sci. Polym. Chem. v.37 The Discovery and Development of Onium Salt Cationic Photoinitiators J. V. Crivello https://doi.org/10.1002/(SICI)1099-0518(19991201)37:23<4241::AID-POLA1>3.0.CO;2-R
  8. J. Appl. Polym. Sci. v.32 no.7 Thermoinitiated Cationic Polymerization of Epoxy Resins by Sulfonium Salts K. Morio;H. Murase;H. Tyuchiya;T. Endo https://doi.org/10.1002/app.1986.070320705
  9. Macromolecules v.32 no.4 Synthesis and the Initiator Activity of fluorenyltriphenylphosphonium Salts in the Cationic Polymerization of Epoxide. Novel thermally latent initiators T. Toneri;K. Watanabe;F. Sanda;T. Endo https://doi.org/10.1021/ma981275q
  10. Epoxy resins chemistry and technology Y. Tanaka
  11. J. Polym. Sci. Polym. Chem. v.41 no.15 Thermal Properties and Fracture Toughness of Epoxy Resins Cured by Phosphonium and Pyrazinium Salts as Latent Cationic Initiators S. J. Park;G. Y. Heo;D. H. Suh https://doi.org/10.1002/pola.10777
  12. J. Polym. Sci. Polym. Phys. v.38 no.16 Cure Behavior of Diglycidylether of Bisphenol A/Trimethylolpropane Triglycidylether Epoxy Blends Initiated by Thermal Latent Catalyst S. J. Park;T. J. Kim;J. R. Lee https://doi.org/10.1002/1099-0488(20000815)38:16<2114::AID-POLB50>3.0.CO;2-8
  13. Prog. Org. Coat. v.28 no.2 Thermal Cationic Curing with Benzylammonium Salts-2 S. Nakano;T. Endo https://doi.org/10.1016/0300-9440(95)00612-5
  14. J. Appl. Polym. Sci. v.67 no.5 Etherification versus Amine Addition during Epoxy Resin/Amine Cure: An in Situ Study using Near-infrared Spectroscopy L. Xu;J. R. Schulup https://doi.org/10.1002/(SICI)1097-4628(19980131)67:5<895::AID-APP15>3.0.CO;2-N
  15. Wear. v.91 no.1 Frictional Behaviour of Cured Epoxide Resins M. Shimbo;M. Ochi;N. Ohoyama https://doi.org/10.1016/0043-1648(83)90109-6
  16. J. Polym. Sci. Polym. Phys. v.39 no.20 Cationic Cure of Epoxy Resin Iinitiated by Methylanilinium Salts as a Latent Thermal Initiator S. J. Park;T. J. Kim;J. R. Lee https://doi.org/10.1002/polb.1211
  17. J. Mater. Sci. v.32 no.8 Cationic Polymerization of Diglycidyl Ether of Bisphenol A L. Matejka;P. Chabanne;L Tighzert;J. P. Pascault
  18. J. Appl. Polym. Sci. v.30 no.7 Curing of Epoxy Resins with Diphenyliodonium Salts as Thermal Initiators J. Gu;S. C. Narang;E. M. Pearce https://doi.org/10.1002/app.1985.070300722
  19. J. Rheology. v.38 no.6 Numerical Interconversion of Linear Viscoelastic Material Functions D. W. Mead https://doi.org/10.1122/1.550526
  20. J. Non-Newtonian. Fluid. Mech. v.68 no.2/3 Analysis of Dynamic Mechanical Data: Inversion into a Relaxation Time Spectrum and Consistency Check1 H. H. Winter https://doi.org/10.1016/S0377-0257(96)01512-1
  21. J. Appl. Polym. Sci. v.27 no.2 Relationship Betweem Viscoelastic Properties and Gelation in Thermosettiog Systems C. M. Tung;P. J. Dynes https://doi.org/10.1002/app.1982.070270220