Metabolic Flux Shift of Weissella kimchii sk10 Grown Under Aerobic Conditions

  • Park, Sun-Mi (Department of Biological Engineering, Seokyeong University) ;
  • Kang, Hye-Sun (Department of Biological Engineering, Seokyeong University) ;
  • Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
  • Published : 2004.10.01

Abstract

The sk10 isolated from kimchi was identified as W. kimchii on the basis of l6s-rDNA sequencing. Studies were made to analyze the metabolic flux shift of the sk10 on glucose under aerobic growth conditions. The sk10 produced 38.2 mM acetate, 16.3 mM ethanol, and 33.2 mM lactate under aerobic conditions, but 2.4 mM acetate, 48.0 mM ethanol, and 44.1 mM lactate under anaerobic conditions. The NADH peroxidase (NADH-dependent hydrogen peroxidase) activity of sk10 grown under aerobic conditions was 11 times higher than that under anaerobic conditions. Under the low ratio of $NADH/NAD^+$, the metabolic flux toward lactate and ethanol was shifted to the flux through acetate kinase without NADH oxidation. The kinds of enzymes and metabolites of sk10 were close to those in the pathway of Leuconostoc sp., but the metabolites produced under aerobic growth conditions were different from those of Leuconostoc sp. The stoichiometric balance calculated using the concentrations of metabolites and substrate was about 97%, coincident with the theoretical values under both aerobic and anaerobic conditions. From these results, it was concluded that the metabolic flux of W. kimchii sk10 was partially shifted from lactate and ethanol to acetate under aerobic conditions only.

Keywords

References

  1. Anders, R. E, D. M. Hogg,and G. R. Jago. 1970. Formation of hydrogen peroxide by group N streptococci and its effect on their growth and metabolism. Appl. Microbial. 19: 608-612.
  2. Choi, H. J., C. I. Sheigh, S. B. Kim, and Y. R. Pyun. 2002. Production of a nisin-like bacteriosin by Lactococcus lactis subsp. lactis A 164 isolated from kimchi. J. Appl. Microbiol. 88: 563- 571.
  3. Choi, H. J., C. I. Cheigh, S. B. Kim, J. C. Lee, D. W Lee, S. W. Choi, J. M. Park, and Y. R. Pyun. 2002. Weissella kimchii sp. nov., a novel lactic acid bacterium from kimchi. Int. J. Syst. Evol. Microbiol. 52: 507-511.
  4. Cocaign-Bouwquet, M., C. Garrigues, P. Loubiere, and N. Lindley. 1997. Physiology of pyruvate metabolism in Lactococcus lactis. Antonie van Leeuwenhoek 70: 253- 267.
  5. Collins, M. D., J. Samelis, J. Metaxopoulos, and S. Wallbanks. 1993. Taxonomic studies on some Leuconostoc-like organisms from fermented sausages: Description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J. Appl. Bacteriol. 75: 595- 603.
  6. Condon, S. 1987. Responses of lactic acid bacteria to oxygen. FEMS Microbiol. Rev. 46: 269- 280.
  7. Garrigues, C., P. Luobiere, N. D. Kindley, and M. CocaignBousquet. 1997. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: Predominant role of the NADH/$NAD^+$ ration. J. Bacteriol. 179: 5283-5287.
  8. Gottschalk, G. 1985. Bacterial Metabolism, pp. 216- 220. 2nd Ed. Springer-Verlag, New York, U.S.A.
  9. Grufferty, R. C. and S. Condon. 1983. Effect of fermentation sugar on hydrogen peroxide accumulation by Streptococcus lactis C10. J. Dairy Res. 50: 481-489. https://doi.org/10.1017/S0022029900032714
  10. Kim, J., J. Chun, and H. U. Han. 2000. Leuconostoc kimchii sp. nov., a new species from kimchi. Int. J. Syst. Evol. Microbiol. 50: 1915-1919
  11. Kim, T. W, S. H. Jung, J. Y. Lee, S. K. Choi, S. H. Park, J. S. Jo, and H. Y. Kim. 2003. Identification of lactic acid bacteria in kimchi using SDS-PAGE profiles of whole cell proteins. J. Microbiol. Biotechnol. 13: 119- 124.
  12. Lee, C. W, C. Y. Ko, and D. M. Ha. 1992. Microfloral changes of the lactic acid bacteria from kimchi by cellular FAMEs analysis. Kor. J. Appl Microbiol. Biotechnol. 24: 234- 241.
  13. Lee, J. H., J. H. Kim, M. R. Kim, S. M. Lim, S. W Nam, J. W Lee, and S. K. Kim. 2002. Effect of dissolved oxygen concentration and pH on the mass production of high molecular weight pullulan by Aureobasidium pullulans. J. Microbiol. Biotechnol. 13: 1-7.
  14. Lee, J. S., C. O. Chun, H. J. Kim, Y. J. Joo, H. J. Lee, C. S. Park, J. S. Ahn, Y. H. Park, and T. I. Mheen. 1996. Analysis of cellular fatty acid methyl ester (FAMEs) for the identification of Leuconostoc strains isolated from kimchi. J. Microbiol. 34: 225- 228.
  15. Lee,J. W, A. Goel, M. M. Ataai, and M. M. Domach. 2002. Flux regulation patterns and energy audit of E. coli B/r and K-12. J. Microbiol. Biotechnol. 12: 268- 272.
  16. Lim, C. R., H. K. Park, and H. U. Han. 1989. Re-evaluation of isolation and identification of gram-positive bacteria from kimchi. Kor. J. Microbiol. 27: 404- 414.
  17. Lopez deFelip, E, M. Llerebezem, W M. de Vos, and J. Hugenholtz. 1998. Cofactor engineering: A novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J. Bacteriol. 180: 3804-3808.
  18. Lopez de Felipe, E, M. J. C. Starrenburg, and J. Hugenholtz. 1997. The role of NADH-oxidation in acetoin and diacetyl production from glucose in Lactococcus lactis. FEMS Microbiol. Lett. 156: 15- 19.
  19. Martinez-Murcia, A. J. and M. D. Collins. 1990. A phylogenetic analysis of the genus Leuconostoc based on reverse transcriptase sequencing of 16s rRNA. FEMS Microbiol. Lett. 70: 73- 83.
  20. Martinez-Murcia, A. J. and M. D. Collins. 1991. A phylogenetic analysis of an atypicalleuconostic: Description of Leuconostoc fallax sp. nov. FEMS Microbiol. Lett. 82: 55- 59.
  21. Mheen, T. I. and T. W. Kwon. 1984. Effect of temperature and salt concentration on kimchii fermentation. Kor. J. Food Sci. Technol. 16: 443- 450.
  22. Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403- 2410.
  23. Snoep, J. L., M. J. Teixeira de Mattos, and O. M. Neijsse. 1991. Effect of the energy source on the NADHINAD ratio and on pyruvate catabolism in anaerobic chemostat cultures of Enterococcus faecalis NCTC 775. FEMS Microbiol. Lett. 81: 63- 66.
  24. Snoep,J. L., M. J. Teixeira de Mattos, M. J. C. Starrenburg, and J. Hugenholtz. 1992. Isolation, characterization and physiological role of the pyruvate dehydrogenase complex and a-acetolactate synthase of Lactococcus lactis subsp. lactis var. deiacetylactis. J. Bacteriol. 174: 4838- 4841.
  25. So, M. H. and Y. B. Kim. 1995. Identification of psychrophilic lactic acid bacteria isolate from kimchi. Kor. J. Food Sci. Technol. 27: 495- 505.
  26. Thomas, T. D., K. W. Turner, and V. L. Crow. 1980. Galactose fermentation by Streptococcuslactisand Streptococcus cremoris: Pathways, products and regulation. J. Bacteriol. 14: 642- 682.
  27. Thomas, T. D., D. C. Ellwood, and V. M. C. Longyear. 1979. Change from homo- to heterolactic fermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures. J. Bacteriol. 138: 109- 117.
  28. Van der Werf, M. J., M. V. Guettler, M. K. Jain, and J. G. Zeikus. 1997. Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentations by Actinobacillus sp. 130Z. Arch. Microbiol. 167: 332- 342.
  29. Varma, A. and B. O. Palsson. 1994. Metabolic flux balancing: Basic concepts, scientific and practical use. [Review]. Bio/Technology 12: 994-998.
  30. Yang, D. and C. R. Woese. 1989. Phylogenetic structure of the 'leuconostoc': An interesting case of a rapidly evolving organism. Syst. Appl. Microbiol. 12: 145- 149.