Biocatalytic Oxidation-Reduction of Pyruvate and Ethanol by Weissella kimchii sk10 Under Aerobic and Anaerobic Conditions

  • Kang, Hye-Sun (Department of Biological Engineering, Seokyeong University) ;
  • Park, Sun-Mi (Department of Biological Engineering, Seokyeong University) ;
  • Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
  • Published : 2004.10.01

Abstract

This study was carried out to analyze the metabolic flux of W. kimchii sk10 on pyruvate and ethanol as a carbon source. The sk10 grown on ethanol produced acetate under aerobic conditions rather than under anaerobic conditions. The lactate and acetate were produced on ethanol plus pyruvate by the sk10 grown under aerobic and anaerobic conditions, respectively. The resting cell of sk10 produced 99.1 mM acetate and 17.3 mM lactate under aerobic conditions and 51.1 mM acetate and 62.4 mM lactate under anaerobic conditions from ethanol plus pyruvate, respectively. This result is thought to be due to the difference in the $NADH/NAD^+$ ratio depending on the growth conditions. The 11-fold overproduction of NADH peroxidase results in a low $NADH/NAD^+$ratio under aerobic growth conditions. At the low $NADH/NAD^+$ ratio, the metabolic flux of pyruvate toward lactate has to be shifted to a flux toward acetate without NADH oxidation to $NAD^+$, and ethanol oxidation to acetate coupled to $NAD^+$ reduction to NADH has to be activated.

Keywords

References

  1. Anders, R. F., D. M. Hogg, and G. R. Jago. 1970. Formation of hydrogen peroxide by group N streptococci and its effect on their growth and metabolism. Appl. Microbiol. 19: 608-612.
  2. Cai, Y., Y. Benno, M. Ogawa, S. Ohmomo, S. Kimura, and T. Nakase. 1988. Influence of Lactobacillus spp. from an inoculant and of Weissella and Leuconostoc spp. from forage crops on silage fermentation. Appl. Environ. Microbiol. 64: 2982- 2987.
  3. Choi, H. J., C. I. Cheigh, S. B. Kim, J C. Lee, D. W Lee, S. W Choi, J. M. Park, and Y.R. Pyun. 2002. Weissella kimchii sp. nov., a novel lactic acid bacterium from kimchi. Int. J. Syst. Evol. Microbiol. 52: 507-511.
  4. Collins, M. D., J. Samelis, J. Metaxopoulos, and S. Wallbanks. 1993. Taxonomic studies on some Leuconostoc-like organisms from fermented sausages: Description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J. Appl. Bacteriol. 75: 595- 603.
  5. Condon, S. 1987. Responses of lactic acid bacteria to oxygen. FEMS Microbiol. Rev. 46: 269- 280.
  6. de Vos, W M. 1996. Metabolic engineering of sugar catabolism in lactic acid bacteria. Anionic van Leeuwenhoek 70: 223- 242.
  7. Kang, H. S., S. M. Park, and D. H. Park. 2003. Growth and metabolic properties of Weissella kimchii sklO under aerobic and anaerobic condition. J. Microbiol. Biotechnol. (in press).
  8. Kim, T. W, S. H. Jung, J. Y. Lee, S. K. Choi, S. H. Park, J. S. Jo, and H. Y. Kim. 2003. Identification of lactic add bacteria in kimchi using SDS-PAGE profiles of whole cell proteins. J. Microbial. Biotechnol. 13: 119- 124.
  9. Lee, J. H., J. H. Kim, M. R. Kim, S. M. Lim, S. W Nam, J W Lee, and S. K. Kim. 2002. Effect of dissolved oxygen concentration and pH on the mass production of high molecular weight pullulan by Aureobasidium pullulans. J. Microbiol. Biotechnol. 13: 1-7.
  10. Lee, J. S., K. C. Lee, J. S. Ahn, T. I. Mheen, Y. R. Pyun, and Y. H. Park. 2002. Weissella koreensis sp. nov., isolated from kimchi. Int. J. Syst. Evol. Microbiol. 52: 1257-1261.
  11. Lee, J. W, A. Goel, M. M. Ataai, and M. M. Domach. 2002. Flux regulation patterns and energy audit of E. coli Blr and K-12. J. Microbiol. Biotechnol. 12: 268- 272.
  12. Lopez deFelip, F., M. Llerebezem, W. M. de Vos, and J. Hugenholtz. 1998. Cofactor engineering: A novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J. Bacteriol. 180: 3804-3808.
  13. Martinez-Murcia, A. J and M. D. Collins. 1990. A phylogenetic analysis of the genus Leuconostoc basedon reversetranscriptase sequencing of 16s rRNA. FEMS Microbiol. Lett. 70: 73- 83.
  14. Martinez-Murcia, A. J. and M. D. Collins. 1991. A phylogenetic analysis of an atypical leuconostic: Descriptionof Leuconostoc fallax sp. nov. FEMS Microbiol. Lett. 82: 55- 59.
  15. Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403- 2410.
  16. Snoep, J. L., M. J. Teixeira de Mattos, and O. M. Neijsse. 1991. Effect of the energy source on the NADH/NAD ratio and on pyruvate catabolism in anaerobic chemostat cultures of Enterococcus faecalis NCTC 775. FEMS Microbiol. Lett. 81: 63- 66.
  17. Snoep, J. L., M. J. Teixeira de Mattos, M. J. C. Starrenburg, and J. Hugenholtz. 1992. Isolation, characterization and physiological role of the pyruvate dehydrogenase complex and a-acetolactate synthase of Lactococcus lactis subsp. lactis var. deiacetylactis. J. Bacterial. 174: 4838- 4841.
  18. Thomas, T. D., D. C. Ellwood, and V. M. C. Longyear. 1979. Change from homo- to heterolactic fermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures. J. Bacteriol. 138: 109- 117.
  19. Thomas, T. D., K. W Turner, and V.L. Crow. 1980. Galactose fermentation by Streptococcus lactis and Streptococcus eremoris: Pathways, products and regulation. J. Bacteriol. 144: 642- 682.
  20. Van der Werf, M. J, M. V. Guettler, M. K. Jain, and J. G. Zeikus. 1997. Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentations by Actinobacillus sp. 130Z. Arch. Microbiol. 167: 332- 342.
  21. Walter, J., C. Hertel, G. W Tannock, C. M. Lis, K. Munro, and W. P. Hammes. 200I. Detection of Lactobacillus, Pediococcus, Leuconostoc and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 67: 2578- 2585.
  22. Yang, D. and C. R. Woese. 1989. Phylogenetic structure of the 'leuconostoc': An interesting case of a rapidly evolving organism. Syst. Appl. Microbiol. 12: 145- 149. https://doi.org/10.1016/S0723-2020(89)80005-0