Statistical Selection of Amino Acids Fortifying a Minimal Defined Medium for a High-level Production of the Kringle Fragments of Human Apolipoprotein(a)

  • Lim, Hyung-Kwon (Mogam Biotechnology Research Institute, Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Sung-Geun (Mogam Biotechnology Research Institute) ;
  • Jung, Kyung-Hwan (Mogam Biotechnology Research Institute, Department of Food and Biotechnology, Chungju National University) ;
  • Seo, Jin-Ho (Department of Agricultural Biotechnology, Seoul National University)
  • Published : 2004.02.01

Abstract

A synthetic defined medium, fortified with amino acids, was developed for the stable production of the kringle fragments of human apolipoprotein(a) (apo(a)), rhLK68. Using a complex rich medium containing yeast extract and a high-cell-density fed-batch culture, the expression level of rhLK68 reached 17% of the total cellular protein, which corresponded to $5\;g\;l^{-1}$ of the culture. To replace the complex media with chemically defined media, several amino acids that positively affect cell growth and gene expression were chosen by a statistical method. The various combinations of the selected amino acids were tested for its fortifying effect on a minimal defined medium. When glutamine only was added, the overall expression level of rhLK68 reached 93% of the complex rich medium increasing the specific expression level by 22.4% and decreasing the cell growth by 24%. Moreover, the addition of glutamine resulted in a 2-fold increase in the concentration of rhLK68 in the culture broth, compared with the minimal defined medium. The synthetic defined media developed in this study could be generally applied to high-cell-density cultures of the recombinant Escherichia coli BL21(DE3), especially for the production of therapeutic proteins that require a strict quality control of the culture media and fermentation processes.

Keywords

References

  1. Bremer, H. and P. P. Dennis. 1996. Modulation of chemical composition and other parameters of the cell by growth rate, pp. 1553-1569. In: Escherichia coli and Salmonella. 2nd ed., ASM Press, Washington, DC, U.S.A
  2. Choi, W. C., B. C. Oh, H. K. Kim, E. S. Lee, and T. K. Oh. 2002. Medium optimization for phytase production by recombinant Escherichia coli using statistical experimental design. J. Microbiol. Biotechnol. 12: 490-496
  3. Joe, Y. A., Y. K. Hong, D. S. Chung, Y. J. Yang, J. K. Kang, Y. S. Lee, S. I. Chang, W. K. You, H. Lee, and S. I. Chung. 1999. Inhibition of human malignant glioma growth in vivo by human recombinant plasminogen kringles 1-3. Int. J. Cancer. 82: 694-699
  4. Kim, J. S., J. H. Chang, H. K. Yu, J. H. Ahn, J. S. Yum, S. K. Lee, K. H. Jung, D. H. Park, Y. Yoon, S. M. Byun, and S. I. Chung. 2003. Inhibition of angiogenesis and angiogenesisdependent tumor growth by the cryptic kringle fragments of human apolipoprotein(a). J. Biol. Chem. 278: 29000-29008
  5. Kim, M. D., W. J. Lee, K. H. Park, K. H. Rhee, and J. H. Seo. 2002. Two-step fed-batch culture of recombinant Escherichia coli for production of Bacillus licheniformis maltogenic amylase. J. Microbiol. Biotechnol. 12: 273-278
  6. Kweon, D. H., N. S. Han, K.-M. Park, and J. H. Seo. 2001. Overproduction of Phytolacca insularis protein in batch and fed-batch culture of recombinant Escherichia coli. Process. Biochem. 36: 537-542
  7. Li, X., J. W. J. Robbins, and K. B. Taylor. 1990. The production of recombinant beta-galactosidase in Escherichia coli in yeast extract enriched medium. J. Ind. Microbiol. 5: 85-94
  8. Lim, H. K. and K. H. Jung 1998. Improvement of heterologous protein productivity by controlling postinduction specific growth rate in recombinant Escherichia coli under control of the PL promoter. Biotechnol. Prog. 14: 548-553
  9. Lim, H. K., K. H. Jung, D. H. Park, and S. I. Chung. 2000. Production characteristics of interferon-a using an Larabinose promoter system in a high-cell-density culture. Appl. Microbiol. Biotechnol. 53: 201-208
  10. Mcfall, E. and E. B. Newman 1996. Amino acids as carbon source, pp. 358-374. In: Escherichia coli and Salmonella. 2nd ed., ASM Press, Washington, DC, U.S.A
  11. McLean, J. W., J. E. Tomlinson, W. J. Kuang, D. L. Eaton, E. Y. Chen, G. M. Fless, A. M. Scanu, and R. M. Lawn. 1987. cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature 330: 132-137
  12. Montgomery, D. C. 1997. Two-level fractional factorial designs, pp. 416-420. In: Design and Analysis of Experiments. 4th ed., John Wiley & Sons, NY, U.S.A
  13. Park, Y. C., C. S. Kim, J. I. Kim, K. H. Choi, and J. H. Seo. 1997. Fed-batch fermentations of recombinant Escherichia coli to produce Bacillus macerans CGTase. J. Microbiol. Biotechnol. 7: 323-328
  14. Park, Y. S., T. Dohjima, and M. Okabe. 1996. Enhanced $\alpha$-amylase production in recombinant Bacillus brevis by fedbatch culture with amino acid control. Biotechnol. Bioeng. 49: 36-44
  15. Reitzer, L. J. 1996. Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, L-alanine, and D-alanine, pp. 391-404. In: Escherichia coli and Salmonella. 2nd ed., ASM Press, Washington, DC, U.S.A
  16. Rothen, S. A., M. Sauer, B. Sonnleitner, and B. Witholt. 1998. Growth characteristics of Escherichia coli HB101[pGEc47] on defined medium. Biotechnol. Bioeng. 58: 92-100.
  17. Smith, P. K., R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson, and D. C. Klenk. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76- 85 https://doi.org/10.1016/0003-2697(85)90442-7
  18. Venkata, D. V., T. Panda, and M. Chidambaram. 2002a. Development of medium for griseofulvin production: Part I. Screening of medium constituents using the Plackett- Burman experimental design. J. Microbiol. Biotechnol. 12: 355-359
  19. Venkata, D. V., T. Panda, and M. Chidambaram. 2002b. Development of medium for griseofulvin production: Part II. Optimization of medium constituents using the central composite design. J. Microbiol. Biotechnol. 12: 360-366