• Title/Summary/Keyword: kringle protein production

Search Result 6, Processing Time 0.022 seconds

Coexpression of Protein Disulfide Isomerase (PDI) Enhances Production of Kringle Fragment of Human Apolipoprotein(a) in Recombinant Saccharomyces cerevisiae

  • Cha Kwang-Hyun;Kim Myoung-Dong;Lee Tae-Hee;Lim Hyung-Kweon;Jung Kyung-Hwan;Seo Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.308-311
    • /
    • 2006
  • In an attempt to increase production of LK8, an 86-amino-acid kringle fragment of human apolipoprotein(a) with three disulfide linkages, protein disulfide isomerase (PDI) was coexpressed in recombinant Saccharomyces cerevisiae harboring the LK8 gene in the chromosome. Whereas overexpression of the LK8 gene without coexpressing PDI was detrimental to both host cell growth and LK8 production, coexpression of PDI increased the LK8 production level by 2.5-fold in batch cultivation and 5.0-fold in fed-batch cultivation compared with the control strain carrying only the genomic PDI gene.

NSA9, a human prothrombin kringle-2-derived peptide, acts as an inhibitor of kringle-2-induced activation in EOC2 microglia

  • Kim, Ji-Yeon;Kim, Tae-Hyong;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.42 no.6
    • /
    • pp.380-386
    • /
    • 2009
  • In neurodegenerative diseases, such as Alzheimer' and Parkinson', microglial cell activation is thought to contribute to CNS injury by producing neurotoxic compounds. Prothrombin and kringle-2 increase levels of NO and the mRNA expression of iNOS, IL-1$\beta$, and TNF-$\alpha$ in microglial cells. In contrast, the human prothrombin kringle-2 derived peptide NSA9 inhibits NO release and the production of pro-inflammatory cytokines such as IL-1$\beta$, TNF-$\alpha$, and IL-6 in LPS-activated EOC2 microglia. In this study, we investigated the anti-inflammatory effects of NSA9 in human prothrombin- and kringle-2-stimulated EOC2 microglia. Treatment with 20-100 ${\mu}M$ of NSA9 attenuated both prothrombin- and kringle-2-induced microglial activation. NO production induced by MAPKs and NF-$\kappa$B was similarly reduced by inhibitors of ERK (PD98059), p38 (SB203580), NF-$\kappa$B (N-acetylcysteine), and NSA9. These results suggest that NSA9 acts independently as an inhibitor of microglial activation and that its effects in EOC2 microglia are not influenced by the presence of kringle-2.

Selection of Optimum Expression System for Production of Kringle Fragment of Human Apolipoprotein(a) in Saccharomyces cerevisiae

  • Cha Kwang Hyun;Kim Myoung Dong;Lee Tae Hee;Lim Hyung Kweon;Jung Kyung Hwan;Seo Jin Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.6
    • /
    • pp.523-527
    • /
    • 2004
  • Recombinant Saccharomyces cerevisiae expression systems were developed to pro­duce a novel human anti-angiogenic protein called LK8, an 86 amino-acid kringle fragment pro­tein with three disulfide linkages. Galactose-inducible LK8 expression plasmid was constructed, and LK8 production levels by four S. cerevisiae strains were compared in order to select an op­timal host strain. S. cerevisiae 2805 was the most efficient among the strains tested. Elevating the LK8 gene copy number through multiple integration using 8-sequences as target sites re­sulted in more than a two-fold increase in the LK8 production level compared with the plasmid­based expression system. The maximum LK8 protein concentration of 25 mg/L was obtained from batch cultivation of the yeast transformant that harbors 16 copies of the LK8 gene. In con­clusion, the strain integrated with the multiple LK8 gene secreted the protein with relatively high yield, although, the increased LK8 gene dosage over 11 copies did not lead to further en­hancement in batch cultivations.

Statistical Selection of Amino Acids Fortifying a Minimal Defined Medium for a High-level Production of the Kringle Fragments of Human Apolipoprotein(a)

  • Lim, Hyung-Kwon;Kim, Sung-Geun;Jung, Kyung-Hwan;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.90-96
    • /
    • 2004
  • A synthetic defined medium, fortified with amino acids, was developed for the stable production of the kringle fragments of human apolipoprotein(a) (apo(a)), rhLK68. Using a complex rich medium containing yeast extract and a high-cell-density fed-batch culture, the expression level of rhLK68 reached 17% of the total cellular protein, which corresponded to $5\;g\;l^{-1}$ of the culture. To replace the complex media with chemically defined media, several amino acids that positively affect cell growth and gene expression were chosen by a statistical method. The various combinations of the selected amino acids were tested for its fortifying effect on a minimal defined medium. When glutamine only was added, the overall expression level of rhLK68 reached 93% of the complex rich medium increasing the specific expression level by 22.4% and decreasing the cell growth by 24%. Moreover, the addition of glutamine resulted in a 2-fold increase in the concentration of rhLK68 in the culture broth, compared with the minimal defined medium. The synthetic defined media developed in this study could be generally applied to high-cell-density cultures of the recombinant Escherichia coli BL21(DE3), especially for the production of therapeutic proteins that require a strict quality control of the culture media and fermentation processes.

Secretory Production of Recombinant Urokinase Kringle Domain in Pichia pastoris

  • Kim, Hyun-Kyung;Hong, Yong-Kil;Park, Hyo-Eun;Hong, Sung-Hee;Joe, Young-Ae
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.591-597
    • /
    • 2003
  • Human urokinase kringle domain, sharing homology with angiostatin kringles, has been shown to be an inhibitor of angiogenesis, which can be used for the treatment of cancer, rheumatoid arthritis, psoriasis, and retinopathy. Here, the expression of the kringle domain of urokinase (UK1) as a secreted protein in high levels is reported. UK1 was expressed in the methylotrophic yeast Pichia pastoris GS115 by fusion of the cDNA spanning from Ser47 to Lys135 to the secretion signal sequence of ${\alpha}-factor$ prepro-peptide. In a flask culture, the secreted UK1 reached about 1 g/l level after 120h of methanol induction and was purified to homogeneity by ion-exchange chromatography. Amino-terminal sequencing of the purified UK1 revealed that it was cleaved at the Ste13 signal cleavage site. The molecular mass of UK1 was determined to be 10,297.01 Da. It was also confirmed that the purified UK1 inhibited endothelial cell proliferation stimulated by basic fibroblast growth factor, vascular endothelial growth factor, or epidermal growth factor, in a dose-dependent manner. These results suggest that a P. pastoris sytem can be employed to obtain large amounts of soluble and active UK1.

Genome-wide Analysis and Control of Microbial Hosts for a High-level Production of Therapeutic Proteins

  • Kim, Sung-Geun;Park, Jung-Hwan;Lee, Tae-Hee;Kim, Myung-Dong;Seo, Jin-Ho;Lim, Hyung-Kwon
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2005.06a
    • /
    • pp.230-232
    • /
    • 2005
  • The formation of insoluble aggregation of the recombinant kringle fragment of human apolipoprotein(a), rhLK8, in endoplasmic reticulum was identified as the rate-limiting step in the rhLK8 secretion in Saccharomyces cerevisiae. To analyze the protein secretion pathway, some of yeast genes closely related to protein secretion was rationally selected and their oligomer DNA were arrayed on the chip. The expression profiling of these genes during the induction of rhLK8 in fermentor fed-batch cultures revealed that several foldases including pdi1 gene were up-regulated in the early induction phase, whereas protein transport-related genes were up-regulated in the late induction phase. The coexpression of pdi1 gene increased rhLK8-folding capacity. Hence, the secretion efficiency of rhLK8 in the strain overexpressing pdi1 gene increased by 2-fold comparing in its parental strain. The oligomer DNA chip arrayed with minimum number of the genes selected in this study could be generally applicable to the monitoring system for the heterologous protein secretion and expression in Saccharomyces cerevisiae. With the optimization of fed-batch culture conditions and the alteration of genetic background of host, we obtained extracellular rhLK8 at higher yields than with Pichia pastoris systems, which was a 25-fold increased secretion level of rhLK8 compared to the secretion level at the initiation of this study.

  • PDF