Crosslinking Reaction of Phenolic Side Chains in Silk Fibroin by Tyrosinase

  • Kang, Gyung-Don (School of Biological Resources and Materials Engineering, Seoul National University) ;
  • Lee, Ki-Hoon (School of Biological Resources and Materials Engineering, Seoul National University) ;
  • Ki, Chang-Seok (School of Biological Resources and Materials Engineering, Seoul National University) ;
  • Park, Young-Hwan (School of Biological Resources and Materials Engineering, Seoul National University)
  • Published : 2004.09.01

Abstract

Tyrosinase oxidizes the tyrosyl residues in silk fibroin (SF) with oxygen, resulting in the production of ο-quinone residues. Subsequently, the inter-or intramolecular crosslinks are formed by reaction with amino groups in through nonenzymatic process. The measurement of oxygen consumption proved that the tyrosyl residues in SF were mostly oxidized to quinone residues by tyrosinase. The reaction mechanisms were proposed in this study and the crosslinking reaction of ο-quinone residues and the enzymatic oxidation of tyrosyl residues could be confirmed by the measurements of UV, $^1$H-NMR and GFC.

Keywords

References

  1. J. H. Waite and M. L. Tanzer, Science, 212, 1038 (1981)
  2. M. Yu, J. Y. Hwang, and T. J. Deming, J. Am. Chem. Soc., 121, 5825 (1999) https://doi.org/10.1021/ja990469y
  3. H. Yamamoto, S. Kuno, A. Nagai, A. Nishida, S. Yamauchi, and K. Ikeda, Int. J. BioI. Macromol, 12, 305 (1990) https://doi.org/10.1016/0141-8130(90)90019-7
  4. R. L. Strausberg and R. P. Link, Trends Biotechnol, 8, 53 (1990) https://doi.org/10.1016/0167-7799(90)90134-J
  5. K. Yamada, T. Chen, G. Kumar, O. Vesnovsky, L. D. T. Topoleski, and G. F. Payne, Biomacromolecules, 1, 252 (2000) https://doi.org/10.1021/bm0003009
  6. T. Chen, H. D. Embree, L. Q. Wu, and G. F. Payne, Biopolymers, 64, 292 (2002) https://doi.org/10.1002/bip.10196
  7. T. Chen, R. Vazquez-Duhalt, C. F. Wu, W. E. Bentley, and G. F. Payne, Biomacromolecules, 2, 456 (2001) https://doi.org/10.1021/bm000125w
  8. G. D. Kang, J. H. Nahm, J. S. Park, J. Y. Moon, C. S. Cho, and J. H. Yeo, Macromol. Rapid Commun., 21, 788 (2000) https://doi.org/10.1002/1521-3927(20000701)21:11<788::AID-MARC788>3.0.CO;2-X
  9. J. H. Nahm and B. S. Shin, 'Silk Science', p.88, Seoul National University Press, 1998
  10. R. D. B. Fraser, T. P. MacRae, and F. H. C. Stewart, J. Mol. Biol, 19, 580 (1966) https://doi.org/10.1016/S0022-2836(66)80026-8
  11. T. Asakura, R. Sugino, J. Yao, H. Takashima, and R. Kishore, Biochemistry, 41, 4415 (2002) https://doi.org/10.1021/bi0119013
  12. A. M. Mayer and E. Harel, Phytochemistry, 18, 193 (1979) https://doi.org/10.1016/0031-9422(79)80057-6
  13. H. Decker, R. Dillinger, and F. Tuczek, Angew. Chem. Int. Ed.,9, 1591 (2000)
  14. A. Golan-Goldhirsh and J. R. Whitaker, J. Agric. Food Chem., 32, 1003 (1984) https://doi.org/10.1021/jf00125a013
  15. V. S. Nithianandam and S. Erthan, Polymer, 39, 4095 (1998) https://doi.org/10.1016/S0032-3861(97)10301-9
  16. C. J. Pouchert and J. Behnke, 'The Aldhch Library of $^{13}C$ and 'H FT NMR Spectra', 1st ed., Vol. 1, Aldrich Chemical Company, Inc., 1993
  17. J. A. Gerrard, S. E. Fayle, and K. H. Sutton, J. Agric. Food Chem.,47, 1183 (1999) https://doi.org/10.1021/jf980811a
  18. N. Yokochi, T. Morita, and T. Yagi, J. Agric. Food Chem.. 51, 2773 (2003)
  19. W. A. Prutz, J. Butler, and E. J. Land, Int. J. Radiat. Biot.. 44,183 (1983) https://doi.org/10.1080/09553008314550981