• Title/Summary/Keyword: Crosslinking reaction

Search Result 194, Processing Time 0.027 seconds

Crosslinking Reaction of Phenolic Side Chains in Silk Fibroin by Tyrosinase

  • Kang, Gyung-Don;Lee, Ki-Hoon;Ki, Chang-Seok;Park, Young-Hwan
    • Fibers and Polymers
    • /
    • v.5 no.3
    • /
    • pp.234-238
    • /
    • 2004
  • Tyrosinase oxidizes the tyrosyl residues in silk fibroin (SF) with oxygen, resulting in the production of ο-quinone residues. Subsequently, the inter-or intramolecular crosslinks are formed by reaction with amino groups in through nonenzymatic process. The measurement of oxygen consumption proved that the tyrosyl residues in SF were mostly oxidized to quinone residues by tyrosinase. The reaction mechanisms were proposed in this study and the crosslinking reaction of ο-quinone residues and the enzymatic oxidation of tyrosyl residues could be confirmed by the measurements of UV, $^1$H-NMR and GFC.

Crosslinking Characteristics of Ethylene Vinyl Acetate Copolymer by the Structure of Crosslinking Agents (가교제의 화학 구조에 따른 에틸렌 비닐 아세테이트 공중합체의 가교 특성 고찰)

  • Lee, Jong-Rok;Choi, Chang-Suk;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.131-136
    • /
    • 2009
  • The effect of the chemical structure of the peroxide crosslinking agent on the reactive crosslinking reaction of EVA was investigated and the physical properties of the crosslinked EVA were studied as well. It was found that peroxide with one peroxy group (perbutyl peroxide) is more effective than peroxides with two peroxy group (2,5 dimethyl 2,5 di(tert-butylperoxyl) hexane and 1,1-di(tert-buthylperoxy)-3,3,5-tri-methylcyclohexane) in melt reactive crosslinking reaction of EVA. The rate of crosslinking was increased by the use of crosslinking acceleration agent but the noticeable effect on degree of crosslinking was not found. Crosslinking caused the lowering of melt flow ability of EVA but mechanical properties were enhanced by the crosslinking of EVA.

Synthesis of Hyper Crosslinked Polymer Particle Having Hydroxyl Group (하이드록시기를 갖는 Hyper Crosslinked 고분자 입자의 합성)

  • Jeon, Hyo-Jin;Kim, Dong-Ok;Park, Jea-Sung;Kim, Jong-Sik;Kim, Dong-Wook;Jung, Mi-Sun;Shin, Seong-Whan;Lee, Sang-Wook
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.66-71
    • /
    • 2011
  • With the synthesis of hyper crosslinked polymer particle (HCPP), having microporous structure with hydroxyl functional group, synthesized via polymerization reaction consists of three stepssuspension polymerization, hyper crosslinking by Friedel-Craft catalysis and hydrolysis reaction, the effects of the ratio of each monomer, hyper crosslinking conditions and $CO_2$ supercritical drying on the variations of surface morphology, pore size & distribution and BET surface area of HCPP have been investigated. It was observed that the formation of surface crack or fracture of HCPP was intimately related with the degree of hyper crosslinking reaction between microphase separated domains. And the value of BET surface area of HCPP increased with the increase of reaction temperature, time and the amounts of solvent used in hyper crosslinking step. Moreover, $CO_2$ supercritical drying was proven to be a very effective method for removing stabilizer, unreacted monomers and oligomers from HCPP but needed to add methanol as a co-solvent for efficient removing of residual catalyst.

Studios on the Thermal Properties of Silane Crosslinked Polyethylene Prepared by Various Crosslinking Conditions (Silane 가교 PE의 가교조건에 따른 열적특성 변화에 관한 연구)

  • Sohn, Ho-Soung;Suh, Kyung-Do
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.1036-1043
    • /
    • 1994
  • The silane crosslinking method was applied for the crosslinking of polyethylene (PE). Crosslinking of PE was performed by, first grafting vinyltrimethoxysilane(VTMOS) to the main chain of PE using an extruder at $200{\sim}210^{\circ}C$, followed by exposure to three different silane crosslinking conditions (1. immersed in $80^{\circ}C$ water, 2. at $80^{\circ}C$ air forced convection oven, 3. exposed to air at room temperature ). The thermal characteristic changes of PE resins with respect to the silane crosslinking conditions were studied by measuring the crystalline melting temperature, density and crosslinking reaction rate. Because silane crosslinking was carried out at solid state, crystalline melting temperature, crystallinity, crystal growth rate, crosslinking reaction rate and the change in the density of silane crosslinked PE were affected by crosslinking condition and the type of base resin. The properties of silane crosslinked PE were different from those of Peroxide crosslinked PE which was crosslinked at the molten state. It was found, from the result of DSC analysis, that silane crosslinked linear low density polyethylene(LLDPE) crosslinked at room temperature had no secondary melting peak because the crosslinking reaction proceeds slowly as the crystalline grows. After crystallization, the melting point of PE was lowered by crystalline interruption of crosslinked site.

  • PDF

Gelation of silk fibroin solution via β-sheet formation promoted by riboflavin-mediated photo-crosslinking

  • Choi, Jaeho;Ki, Chang Seok
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.45 no.1
    • /
    • pp.12-16
    • /
    • 2022
  • Di-tyrosine photo-crosslinking of silk fibroin (SF) is recently highlighted as a biocompatible hydrogel fabrication process, because this method does not need potentially harmful chemical species. However, the resulting crosslinking density is often insufficient to obtain a mechanically stiff hydrogel unless additional oxygen is provided during the reaction. In this study, we proposed a combinational crosslinking method to form an SF hydrogel via the di-tyrosine photo-crosslinking with riboflavin (photoinitiator) and physical interaction of SF chains. In the UV light-irradiated SF solution, small particles formed and these particles promoted β-sheet formation of SF molecules, resulting in quick gelation. The di-tyrosine photo-crosslinking produced nuclei that might trigger regular assembly of SF molecules in high temperature condition. Conclusively, this process would contribute to a development of biocompatible hydrogel fabrication for biomedical uses of SF hydrogels.

Application of Hyaluronic Acid Membrane Cross-linked with 1,3-Butadiene Diepoxide (1,3-Butadiene diepoxide로 가교된 히아루론산 막의 응용)

  • Cheong, Seong-Ihl;Han, Gwang-Seon;Bae, Jung-Eun;Kim, In-Seop
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.124-131
    • /
    • 2008
  • The biodegradable hyaluronic acid membranes cross-linked with lactide using the crosslinking agent, 1,3-butadiene diepoxide (BD), were prepared as a potential biocompatible material for tissue engineering. The degree of lactide and BD reaction of the crosslinked membrane was determined by the analysis of nuclear magnetic resonance spectroscopy 6% of growth inhibition was observed in case of high BD concentration but the value is low enough not to affect cell growth. As the crosslinking reaction temperature increased, elongation increased and swelling ratio decreased. The rate of degradation was found to increase with the crosslinking temperature. The drug release experiment showed that the transport of drug through the membrane decreased with the crosslinking temperature.

Study on the Physicochemical Properties of Crosslinked Poly(Styrene-Butadiene-Styrene) Block Copolymers Prepared by Radiation (방사선으로 제조된 가교 구조의 Poly(Styrene-Butadiene-Styrene) 블록 공중합체 특성에 관한 연구)

  • Lee, Sun-Young;Song, Ju-Myung;Sohn, Joon-Yong;Shin, Junhwa
    • Journal of Radiation Industry
    • /
    • v.6 no.2
    • /
    • pp.171-176
    • /
    • 2012
  • In this study, a crosslinked poly(styrene-butadiene-styrene) [SBS] block copolymers were prepared by using gamma ray irradiation method. The effects of various radiation doses on the degree of crosslinking, thermo property, and morphology of crosslinked SBS block copolymer were investigated. The degree of crosslinking of crosslinked SBS block copolymers were measured by gel-fraction and FT-IR. It was found that the degree of crosslinking of crosslinked SBS block copolymers increases with increase of the irradiation dose while the TGA result shows that the initial degradation temperature of irradiated SBS block copolymer was shifted to lower temperature with increasing irradiation dose. These results indicate that degradation reaction also occurs when SBS block copolymer is exposed to gamma ray irradiation for crosslinking reaction. The SAXS and FE-SEM results indicate that the phase separation of the styrene block and butadiene block was reduced with increasing irradiation dose.

Facile Preparation of Biodegradable Glycol Chitosan Hydrogels Using Divinyladipate as a Crosslinker

  • Kim, Beob-Soo;Yeo, Tae-Yun;Yun, Yeon-Hee;Lee, Byung-Kook;Cho, Yong-Woo;Han, Sung-Soo
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.734-738
    • /
    • 2009
  • Biodegradable, pH-sensitive, glycol chitosan (GC) hydrogels were prepared using divinyl adipate (DVA) as a crosslinker and acetic acid as a catalyst. DVA has highly reactive double vinyl ester groups and GC contains a high density of hydroxyl groups, with two in every glucosamine unit. The transesterification reaction between vinyl esters and hydroxyl groups produced crosslinked GC hydrogels. The initial crosslinking reaction was monitored by measuring the viscosity of the reaction mixture. When DVA was added to the GC solution and heated to $50^{\circ}C$, the viscosity of the GC solution gradually increased, implying a crosslinking reaction and hydrogel formation. A new peak from the ester group was observed in the FTIR spectra of the GC hydrogels, confirming the crosslinking reaction. The synthesized GC hydrogel showed pH-dependent water absorbency, mainly due to the presence of amine groups ($-NH_2$) at the C-2 position of the glucosamine unit of GC. The water absorbency greatly increased at acidic pH and slightly decreased at alkaline pH. The GC hydrogel gradually degraded in $37^{\circ}C$ water due to hydrolysis of the ester bonds, which were intermolecular crosslinking sites. A red dye, 5-carboxyltetramethyl-rhodamine (CTMR), was entrapped in the GC hydrogels as a model compound. CTMR was released from GC hydrogels in two steps: an initial burst release mainly due to desorption and diffusion, and a second sustained release possibly due to gradual degradation.

A Study on the Vulcanization Characteristics of SBR/BR Blends Containing Reinforcing Fillers (보강성 충전제가 첨가된 SBR/BR 블렌드의 가황특성에 관한 연구)

  • Lee, Seag
    • Elastomers and Composites
    • /
    • v.33 no.4
    • /
    • pp.274-280
    • /
    • 1998
  • Order of reaction, rate constant, activation energy for vulcanization reaction, crosslinking density, and elastic constant of the network produced by sulfur curing were investigated on the SBR/BR blends containing silica and carbon black under same cure system. The reaction order was shown to be first order regardless of filler types. The carbon black filled rubber compounds showed higher rate constant compared to silica filled compounds. But activation energy appeared to be same regardless of filler type and rubber blend ratio. The crosslinking density and elastic constant is higher in the carbon black filled compound compared to silica filled compounds because of strong interaction between rubber and carbon black. On the other hand, crosslinking density and elastic constant were decreased with increasing the butadine rubber content in rubber blends. From the comparison of combined sulfur content in the vulcanized rubber, sulfur content in the silica filled compound become constant 20min later after reaction initiates but sulfur content in the carbon black filled compound become constant 10min later after reaction starts. The silica compound has a longer induction time ($t_2$) and optimum cure time($t_{90}$) compared to those of the carbon black filled compound.

  • PDF

Photo-Crosslinking of Poly(glycidyl methacrylate) Initiated by N-Hydroxyphthalimide Sulfonates

  • Kyu Ho Chae;Ik Ju Park;Min Ho Choi
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.614-618
    • /
    • 1993
  • The photoacid generation efficiency of four N-hydroxyphthalimide sulfonate derivatives was studied by photo-crosslinking reaction of poly(glycidyl methacrylate) in solid film state. The relative photoacid generation efficiency was increased in the order of N-hydroxyphthalimide methanesulfonate > -toluenesulfonate > -nitrobenzenesulfonate > -dinitrobenzensulfonate, and the reaction was efficiently sensitized by benzophenone suggesting that this photoreactions is likely to proceed through its triplet excited state.