DOI QR코드

DOI QR Code

Fast Self-Similar Network Traffic Generation Based on FGN and Daubechies Wavelets

FGN과 Daubechies Wavelets을 이용한 빠른 Self-Similar 네트워크 Traffic의 생성


Abstract

Recent measurement studies of real teletraffic data in modern telecommunication networks have shown that self-similar (or fractal) processes may provide better models of teletraffic in modern telecommunication networks than Poisson processes. If this is not taken into account, it can lead to inaccurate conclusions about performance of telecommunication networks. Thus, an important requirement for conducting simulation studies of telecommunication networks is the ability to generate long synthetic stochastic self-similar sequences. A new generator of pseu-do-random self-similar sequences, based on the fractional Gaussian nois and a wavelet transform, is proposed and analysed in this paper. Specifically, this generator uses Daubechies wavelets. The motivation behind this selection of wavelets is that Daubechies wavelets lead to more accurate results by better matching the self-similar structure of long range dependent processes, than other types of wavelets. The statistical accuracy and time required to produce sequences of a given (long) length are experimentally studied. This generator shows a high level of accuracy of the output data (in the sense of the Hurst parameter) and is fast. Its theoretical algorithmic complexity is 0(n).

최근의 통신 네트워크에서 teletraffic의 양상은 Poisson 프로세스보다 self-similar 프로세스에 의해서 더 잘 반영된다. 이는 통신 네트워크의 teletraffic에 관련하여 self-similar한 성질을 고려하지 않는다면, 통신 네트워크의 성능에 관한 결과는 부정확 할 수밖에 없다는 의미가 된다. 따라서, 통신 네트워크에 관한 시뮬레이션을 수행하기 위한 매우 중요한 요소 중에 하나는 충분히 긴 self-similar한 sequence를 얼마나 잘 생성하느냐의 문제이다. 본 논문에서는 fractional Gaussian noise와 wavelet 변환을 이용한 새로운 pseudo-random self-similar sequence 생성기를 구현 및 분석하였다. 특별히 본 생성기는 다른 wavelet 변환보다 long range dependent한 프로세스들의 self-similar 구조에 잘 맞기 때문에 좀더 정확한 결과를 유도할 수 있는 Daubechies wavelet을 사용하였다. 본 생성기를 이용하여 매우 긴 sequence를 생성하는데 요구되는 통계적인 정확도와 생성시간에 대해서 분석하였으며, 본 논문에서 제안한 생성기의 성능은 Hurst 변수의 상대적인 정확도로 보았을 때, 그리고 sequence의 생성시간을 고려했을 때에 매우 우수함을 보였다. 이 생성기의 이론적 complexity는 n개의 난수를 발생하는데 0(n)이 요구된다.

Keywords

References

  1. W. E. Leland, M. S. Taqqu, W. Willinger and D. V. Wilson, 'On the Self-Similar Nature of Ethernet Traffic (Extended Version),' IEEE ACM Transactions on Networking, Vol.2, No.1, pp.1-15, 1994 https://doi.org/10.1109/90.282603
  2. N. Likhanov, B. Tsybakov and N.D. Gerorganas, 'Analysis of an ATM Buffer with Self-Similar ('Fractal') Input Traffic,' Proceedings of IEEE INFOCOM'95, Boston, Massachusetts, pp.985-992, 1995 https://doi.org/10.1109/INFCOM.1995.515974
  3. V. Paxson and S. Floyd, 'Wide-Area Traffic : the Failure of Poisson Modeling,' IEEE ACM Transactions on Networking, Vol.3, No.3, pp.226-244, 1995 https://doi.org/10.1109/90.392383
  4. B. K. Ryu, 'Fractal Network Traffic : from Understanding to Implications,' PhD theis, Graduate School of Arts and Sciences, Columbia University, 1996
  5. M. W. Garrett and W. Willinger, 'Analysis, Modeling and Generation of Self-Similer VBR Video Traffic,' Computer Communication Review, Proceedings of ACM SIGCOMM'94, London, UK, Vol.24, No.4, pp.269-280, 1994 https://doi.org/10.1145/190314.190339
  6. M. Krunz and A. Makowski, 'A Source Model for VBR Video Traffic Based on M/G/${\infty}$ Input Processes,' Proceedings of IEEE INFOCOM'98, San Francisco, CA, USA, pp.1441-1448, 1998 https://doi.org/10.1109/INFCOM.1998.662962
  7. O. Rose, 'Traffic Modeling of Variable Bit Rate MPEG Video and Its Impacts on ATM Networks,' PhD thesis, Bayerische Julius-Maximilians-Universitat Wurzburg, 1997
  8. J. Beran, 'Statistical Methods for Data with Long Range Dependence, Statistical Science, Vol.7, No.4, pp.404-427, 1992 https://doi.org/10.1214/ss/1177011122
  9. A. L. Neidhardt and J. L. Wang, 'The Concept of Relevant Time Scales and its Application to Queueing Analysis of Self-Similar Traffic (or Is Hurst Naughty or Nice?),' Performance Evaluation Review, Proceedings of ACM SIGMETRICS'98, Madison, Wisconsin, USA, pp.222-232, 1998 https://doi.org/10.1145/277858.277923
  10. B. B. Mandelbrot, 'A Fast Fractional Gaussian Noise Generator,' Water Resources Research, Vol.7, pp.543-553, 1971 https://doi.org/10.1029/WR007i003p00543
  11. J. R. M. Hosking, 'Modeling Persistence in Hydrological Time Series Using Fractional Differencing,' Water Resources Research, Vol.20 No.12, pp.1898-1908, 1984 https://doi.org/10.1029/WR020i012p01898
  12. M. C. Cario and B. L. Nelson, 'Numerical Methods for Fitting and Simulating Autoregressive-to-Anything Processes,' INFORMS Journal on Computing, Vol.10, No.1, pp.72-81, 1998 https://doi.org/10.1287/ijoc.10.1.72
  13. T. Taralp, M. Devetsikiotis, I. Lambadaris and A. Bose, 'Efficient Fractional Gaussian Noise Generation Using the Spatial Renewal Process,' Proceedings of IEEE International Conference on Communications (ICC'98), Atlanta, GA, USA, pp.7-11, 1998 https://doi.org/10.1109/ICC.1998.683067
  14. H.-D. J. Jeong, D. McNickle and K. Pawlikowski, 'A Comparative Study of Three Self-Similar Teletraffic Generators,' Proceedings of 13th European Simulation Multiconference, ESM '99, Vol.1, pp.356-362, Warsaw, Poland, 1999
  15. W-C. Lau, A. Erramilli, J. L. Wang and W. Willinger, 'Self-Similar Traffic Generation : the Random Midpoint Displacement Algorithm and its Properties,' Proceedings of IEEE International Conference on Communications (ICC'95), Seattle, WA, pp.466-472, 1995 https://doi.org/10.1109/ICC.1995.525213
  16. V. Paxson, 'Fast, Approximate Synthesis of Fractional Gaussian Noise for Generating Self-Similar Network Traffic,' Computer Communication Review, ACM SIGCOMM, Vol.27, No.5, pp.5-18, 1997 https://doi.org/10.1145/269790.269792
  17. J. Beran, 'Statistics for Long-Memory Processes,' Chapman and Hall, New York, 1994
  18. K. Park and W. Willinger, 'Self-Similar Network Traffic and Performance Evaluation,' Self-Similar Network Traffic : An Overview, John Wiley & Sons, Inc., K. Park and W. Willinger (eds), New York, pp.1-38, 2000
  19. M. Taqqu, 'Self-Similar Processes,' Encyclopedia of Statistical Sciences, John Wiley and Sons, Inc., S. Kotz and N. Johnson (eds), New York, Vol.8, 1988
  20. B, B. Mandelbrot and J. R. Wallis, 'Computer Experiments with Fractional Gaussian Noises,' Water Resources Research, Vol.5, No.1, pp.228-267, 1969 https://doi.org/10.1029/WR005i001p00228
  21. D. R. Cox, 'Long-Range Dependence : a Review,' Statistics : An Appraisa, Iowa State Statistical Library, The Iowa State University Press, H. A. David and H. T. David (eds.). pp.55-74, 1984
  22. P. Flandrin, 'Wavelet Analysis and Synthesis of Fractional Brownian Motion,' IEEE Transactions of Information Theory, Vol.38, No.2, pp.910-917, 1992 https://doi.org/10.1109/18.119751
  23. L. M. Kaplan and C.-C. J. Kuo, 'Fractal Estimation from Noisy Data via Discrete Fractional Gaussian Noise (DFGN) and the Haar Basis,' IEEE Transactions on Signal Processing, Vol.41, No.12, pp.3554-3562, 1993 https://doi.org/10.1109/78.258096
  24. P. Abry and D. Veitch, 'Wavelet Analysis of Long-Range-Dependent Traffic,' IEEE Transactions on Information Theory, Vol.44, No.1, pp.2-15, 1998 https://doi.org/10.1109/18.650984
  25. S. Ma and C. Ji, 'Modeling Video Traffic in the Wavelet Domain,' Proceedings of IEEE INFOCOM'98, San Francisco, CA, USA, pp.201-208, 1998 https://doi.org/10.1109/INFCOM.1998.659655
  26. I. Daubechies, 'Ten Lectures on Wavelets,' CBMS-NSF Regional Conference Series in Applied Mathematics, SLAM Press, Philadelphia, Pennsylvania, Vol.61, 1992
  27. M. V. Wickerhauser, 'Adapted Wavelet Analysis from Theory to Software,' A. K. Peters, Ltd., Wellesley, Massachusetts, 1994
  28. H.-D. J. Jeong, D. McNickle and K. Pawlikowski, 'Fast Self-Similar Teletraffic Generation Based on FGN and Inverse DWT,' Tech. Rap. TR-COSC 03/99, Department of Computer Science, University of Canterbury, Christchurch, New Zealand, 1999
  29. V. Ribeiro, R. Riedi, M. Crouse and R. Baraniuk, 'Simulation of nonGaussian Long-Range-Dependent Traffic using Wavelets,' Performance Evaluation Review, Proceedings of ACM SIGMETRICS'99, Vol.27, No.1, pp.1-12, 1999 https://doi.org/10.1145/301464.301475
  30. R. Riedi, M. Crouse, V. Ribeiro and R. Baraniuk, 'A Multifractal Wavelet Model with Application to Network Traffic,' IEEE Transactions on Information Theory, Vol.45, No.3, pp.992-1018, 1999 https://doi.org/10.1109/18.761337
  31. D. Veitch, J.-A. Backar, J. Wall, J. Yates and M. Roughan, 'On-Line Generation of Fractal and Multifractal Traffic,' The PAM2000 Passive and Active Measurement Workshop, Hamilton, New Zealand, 2000
  32. M. Roughan and D. Veitch and P. Abry, 'On-Line Estimation of the Parameters of Long-Range Dependence,' Proceedings of GLOBECOM'98, Sydney, Australia, pp.3716-3721, 1998 https://doi.org/10.1109/GLOCOM.1998.776004
  33. S. J. Schiff, 'Resolving Time-Series Structure with a Controlled Wavelet Transform,' Optical Engineering, Vol.31, No.11, pp.2492-2495, 1992 https://doi.org/10.1117/12.60040
  34. S. Gonzalez Sanchez, N. Gonzalez Prelcic and S. Garcia Galan, 'Uvi_Wave. - Wavelets Toolbox for use with Matlab,' Departamenteo de Tecnoloxais das Comunicacions. Universidade de Vigo, Vigo, ftp://ftp.tsc.uvigo.es/pub/Uvi_wave.doc.ps.gz, 1996
  35. D. Veitch and P. Abry, 'A Wavelet Based Joint Estimator of the Parameters of Long-Range Dependence,' IEEE Transactions on Information Theory, Special Issue on Multiscale Statistical Signal Analysis and is Applications, Vol.45, No.3, pp.878-897, 1999 https://doi.org/10.1109/18.761330
  36. M. Roughan and D. Veitch, 'Measuring Long-Range Dependence Under Changing Traffic Conditions,' Proceedings of IEEE INFOCOM'99, New York, NY, USA, pp.1513-1521, 1999 https://doi.org/10.1109/INFCOM.1999.752173
  37. H,-D. Jeong D. McNickle and K. Pawlikowski, 'An Empirical Comparison of Hurst Parameter Estimators,' IEEE Transactions on Information Theory, Submitted, June, 2003