References
- Soviet Math. Dokl. v.11 Mapping of families of sets A.D.Alekandrov
- Proc. Amer. Math. Soc. v.4 On isometries of Euclidean spaces F.S.Beckman;D.A.Quarles https://doi.org/10.2307/2032415
- Aequationes Math. v.29 Isometrien in normierten Raumen W.Benz https://doi.org/10.1007/BF02189828
- Elem. Math. v.42 An elementary proof of the theorem of Beckman and Quales W.Benz
- Aequationes Math. v.34 A contribution to a theorem of Ulam and Mazur W.Benz;H.Berens https://doi.org/10.1007/BF01840123
- Math. Mag. v.46 Characterizing motions by unit distance invariance R.L.Bishop https://doi.org/10.2307/2687969
- Facta Univ. Ser. Math. Inform. v.7 On some properties of isometric mappings K.Ciesielski;Th.M.Rassias
- Math. Mag. v.49 Functions that preserve unit distance D.Greewell;P.D.Johnson https://doi.org/10.2307/2689433
- Candidate's Dissertation On mappings that preserve a family of sets in Hilbert and hyperbolic spaces A.Guc
- Soviet Math. Dokl. v.17 On a characteristic property of isometric mappings A.V.Kuz`minyh
- Proc. Amer. Math. Soc. v.116 On the Aleksandrov problem of conservative distances B.Mielnik;Th.M.Rassias https://doi.org/10.2307/2159497
- Amer. Math. Monthly v.90 Is a distance one preserving mapping between metric spaces always an isometry? Th.M.Rassias https://doi.org/10.2307/2975550
- Facta Univ. Ser. Math. Inform. v.2 Some remarks on isometric mappings Th.M.Rassias
- Indian J. Math. v.32 Mappings that preserve unit distance Th.M.Rassias
- Recent Progress in Inequalities Properties of isometries and approximate isometries Th.M.Rassias;G. V. Milovanovic(ed.)
- J. Math. Anal. Appl. v.235 Properties of isometric mappings Th.M.Rassias https://doi.org/10.1006/jmaa.1999.6363
- J. Nat. Geom. v.3 Properties of isometries Th.M.Rassias;C.S.Sharma
- Proc. Amer. Math. Soc v.118 On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mapping Th.M.Rassias;P.Semrl https://doi.org/10.2307/2160142
- Aequationes Math. v.19 Eine Erganzung zum Satz von Beckman and Quarles E.M.Schroder https://doi.org/10.1007/BF02189849
- Math. Mag. v.43 Congruence-preserving mappings C.G.Townsend https://doi.org/10.2307/2688111
Cited by
- The stability of some points arising from continuous, differential and integral expressions vol.180, pp.1, 2016, https://doi.org/10.1007/s00605-015-0779-7
- The Aleksandrov–Benz–Rassias problem on linear n-normed spaces vol.180, pp.2, 2016, https://doi.org/10.1007/s00605-015-0786-8