DOI QR코드

DOI QR Code

ON DISTANCE-PRESERVING MAPPINGS

  • Jung, Soon-Mo (Mathematics Section College of Science and Technology Hong-Ik University) ;
  • M.Rassias, Themistocles (Department of Mathematics National Technocal University of Athens)
  • Published : 2004.07.01

Abstract

We generalize a theorem of W. Benz by proving the following result: Let $H_{\theta}$ be a half space of a real Hilbert space with dimension $\geq$ 3 and let Y be a real normed space which is strictly convex. If a distance $\rho$ > 0 is contractive and another distance N$\rho$ (N $\geq$ 2) is extensive by a mapping f : $H_{\theta}$ \longrightarrow Y, then the restriction f│$_{\theta}$ $H_{+}$$\rho$/2// is an isometry, where $H_{\theta}$$\rho$/2/ is also a half space which is a proper subset of $H_{\theta}$. Applying the above result, we also generalize a classical theorem of Beckman and Quarles.

Keywords

References

  1. Soviet Math. Dokl. v.11 Mapping of families of sets A.D.Alekandrov
  2. Proc. Amer. Math. Soc. v.4 On isometries of Euclidean spaces F.S.Beckman;D.A.Quarles https://doi.org/10.2307/2032415
  3. Aequationes Math. v.29 Isometrien in normierten Raumen W.Benz https://doi.org/10.1007/BF02189828
  4. Elem. Math. v.42 An elementary proof of the theorem of Beckman and Quales W.Benz
  5. Aequationes Math. v.34 A contribution to a theorem of Ulam and Mazur W.Benz;H.Berens https://doi.org/10.1007/BF01840123
  6. Math. Mag. v.46 Characterizing motions by unit distance invariance R.L.Bishop https://doi.org/10.2307/2687969
  7. Facta Univ. Ser. Math. Inform. v.7 On some properties of isometric mappings K.Ciesielski;Th.M.Rassias
  8. Math. Mag. v.49 Functions that preserve unit distance D.Greewell;P.D.Johnson https://doi.org/10.2307/2689433
  9. Candidate's Dissertation On mappings that preserve a family of sets in Hilbert and hyperbolic spaces A.Guc
  10. Soviet Math. Dokl. v.17 On a characteristic property of isometric mappings A.V.Kuz`minyh
  11. Proc. Amer. Math. Soc. v.116 On the Aleksandrov problem of conservative distances B.Mielnik;Th.M.Rassias https://doi.org/10.2307/2159497
  12. Amer. Math. Monthly v.90 Is a distance one preserving mapping between metric spaces always an isometry? Th.M.Rassias https://doi.org/10.2307/2975550
  13. Facta Univ. Ser. Math. Inform. v.2 Some remarks on isometric mappings Th.M.Rassias
  14. Indian J. Math. v.32 Mappings that preserve unit distance Th.M.Rassias
  15. Recent Progress in Inequalities Properties of isometries and approximate isometries Th.M.Rassias;G. V. Milovanovic(ed.)
  16. J. Math. Anal. Appl. v.235 Properties of isometric mappings Th.M.Rassias https://doi.org/10.1006/jmaa.1999.6363
  17. J. Nat. Geom. v.3 Properties of isometries Th.M.Rassias;C.S.Sharma
  18. Proc. Amer. Math. Soc v.118 On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mapping Th.M.Rassias;P.Semrl https://doi.org/10.2307/2160142
  19. Aequationes Math. v.19 Eine Erganzung zum Satz von Beckman and Quarles E.M.Schroder https://doi.org/10.1007/BF02189849
  20. Math. Mag. v.43 Congruence-preserving mappings C.G.Townsend https://doi.org/10.2307/2688111

Cited by

  1. The stability of some points arising from continuous, differential and integral expressions vol.180, pp.1, 2016, https://doi.org/10.1007/s00605-015-0779-7
  2. The Aleksandrov–Benz–Rassias problem on linear n-normed spaces vol.180, pp.2, 2016, https://doi.org/10.1007/s00605-015-0786-8