Storage of Pollen Biofactory for in vitro Growth and rProtein Synthesis

기내배양과 재조합 단백질 생산을 위한 화분 Biofactory의 저장기술의 개발

  • 박희성 (대구가톨릭대학교 생명자원학부) ;
  • 고재철 (대구가톨릭대학교 생명자원학부)
  • Published : 2004.06.01

Abstract

A method of collection and long-term storage of viable lily (Lilium longiflorum) pollen grains were developed for their in vitro growth and transformation in consistency. Petroleum ether, n-heptane, cyclohexane and benzene, as pollen collection medium, were determined less toxic to pollen growth in vitro than others tested. Pollen grains, however, lost their growth activity if stored in these solvents more than a week, So, a serial performance, that is, pollen grain collection in these solvents, air-drying and immediate transfer to low temperature condition was determined desirable for keeping the viability much longer. Pollen grains from this storage showed a successful transformation in vitro with a cDNA encoding tissue plasminogen activator (TPA) protein using Agrobacterium via vacuum infiltration according to western blotting analysis.

기내에서의 발아 및 형질전환 활성을 지닐 수 있는 백합 (Lilium longiflorum) 화분의 장기보존조건을 얻기 위하여 용매를 이용한 연구를 수행하였다. 화분의 용이한 수집을 위하여 용매를 사용했을 때, petroleum ether, n-heptane, benzene 등의 경우 화분의 기내발아에는 영향을 미치지는 않았으나 수집과 정 후 바로 화분건조 및 냉동 보관함으로써 발아활성을 유지 할 수 있었다. 이들의 활성유지는 또한 vacuum infiltration 및 Agrobacterium을 이용한 형질전환에 따른 외래유전자인 tissue plasminogen activator의 발현에 의하여 확인하였다.

Keywords

References

  1. Plant Cell v.5 Male gametophyte development McCormick, S. https://doi.org/10.1105/tpc.5.10.1265
  2. Annu. Rev. Plant Physiol. Pant Mol. Biol. v.48 Pollen germination and tube growth Taylor, L. P.;P. K. Helper https://doi.org/10.1146/annurev.arplant.48.1.461
  3. CR. Acad. Sci. Paris Life Sci. v.316 In planta Agrobaterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants Bethtold, N.;J. Ellis;G. Pelletier
  4. Plant Cell Rep. v.19 Transient gene expression in pine pollen tubes following particle bombardment Fernando, D. D.;J. N. Owens;S. Misra https://doi.org/10.1007/s002990050003
  5. Can. J. For. Res. v.28 Compatability of defferent pollination techniques with micropojectile bombardment of Norway spruce and Scots pine pollen Aronen, T. S.;T. O. Nikkanen;H. M. Haggman https://doi.org/10.1139/cjfr-28-1-79
  6. Can. J. For. Res. v.27 Gene transfer by particle bombardment to Norway spruce and Scots pine pollen Haggman, H. M.;T. S. Aronen;T. O. Hikkanen https://doi.org/10.1139/cjfr-27-6-928
  7. Plant Sci. v.72 Transformation experiments by pipetting Agrobacterium into the spikelete of wheat(Triticum aestivum L.) Hess, D.;K. Dressler;R. Nimmrichter https://doi.org/10.1016/0168-9452(90)90087-5
  8. Plant Mol. Biol. Rep. v.7 A simple method for the transformation of rice via the pollen-tude pathway Luo, Z. X.;R. Wu https://doi.org/10.1007/BF02669248
  9. Pollen Biology Biochemistry Management Stanley, R. G.;H. F. Linskens
  10. Kor. J. Biotechnol. Bioeng. v.17 Analysis of tissue plasminogen activator expression using pollen culture in vitro Park, I. H.;H. S. Park
  11. Mol. Biol. Med. v.3 Cloning of cDNA coding for tissue-type plasminogen activator and its expression in E. coli. Harris, T. J.;T. Patel;F. A. Marston;S. Little;J. S. Emtage;G. Opdenakker;G. Volckaert;W. Rombauts;A. Billiau;P. DeSomer
  12. Kor. J. Biotechnol. Bioeng. v.17 Analysis of UreB protein synthesis from transgenic lily pollen Park, H. S.;I. H. Park