Design of Systolic Multipliers in GF(2$^{m}$ ) Using an Irreducible All One Polynomial

기약 All One Polynomial을 이용한 유한체 GF(2$^{m}$ )상의 시스톨릭 곱셈기 설계

  • 권순학 (성균관대학교 수학과) ;
  • 김창훈 (대구대학교 컴퓨터정보공학) ;
  • 홍춘표 (대구대학교 컴퓨터정보공학과)
  • Published : 2004.08.01

Abstract

In this paper, we present two systolic arrays for computing multiplications in CF(2$\^$m/) generated by an irreducible all one polynomial (AOP). The proposed two systolic mays have parallel-in parallel-out structure. The first systolic multiplier has area complexity of O(㎡) and time complexity of O(1). In other words, the multiplier consists of m(m+1)/2 identical cells and produces multiplication results at a rate of one every 1 clock cycle, after an initial delay of m/2+1 cycles. Compared with the previously proposed related multiplier using AOP, our design has 12 percent reduced hardware complexity and 50 percent reduced computation delay time. The other systolic multiplier, designed for cryptographic applications, has area complexity of O(m) and time complexity of O(m), i.e., it is composed of m+1 identical cells and produces multiplication results at a rate of one every m/2+1 clock cycles. Compared with other linear systolic multipliers, we find that our design has at least 43 percent reduced hardware complexity, 83 percent reduced computation delay time, and has twice higher throughput rate Furthermore, since the proposed two architectures have a high regularity and modularity, they are well suited to VLSI implementations. Therefore, when the proposed architectures are used for GF(2$\^$m/) applications, one can achieve maximum throughput performance with least hardware requirements.

본 논문에서는 AOP(All One Polynomial)에 의해 결정되는 유한체 GF(2$^{m}$ )상의 곱셈을 위한 두 가지 종류의 시스톨릭 어레이를 제안한다. 제안된 두 시스톨릭 어레이 모두 패러럴 입출력 구조를 가진다. 첫 번째 제안된 곱셈기는 O($m^2$)의 면적 복잡도와 O(1)의 시간 복잡도를 가진다. 다시 말하면, 이 곱셈기는 m(m+1)/2 개의 동일한 셀들로 이루어지며 초기 m/2+1 사이클 지연 후, 1 사이클마다 곱셈의 결과를 출력한다. 첫 번째 제안된 곱셈기를 기존의 AOP를 사용하는 병렬형 시스톨릭 곱셈기와 비교 분석한 결과 하드웨어 및 계산지연 시간에 있어 각각 12% 및 50%의 성능 개선을 보인다. 두 번째 제안된 시스톨릭 곱셈기는 암호응용을 위해 선형 어레이로 설계되었으며, O(m)의 면적 복잡도와 O(m)의 시간 복잡도를 가진다. 즉, m+1 개의 동일한 셀들로 이루어지며 m/2+1 사이클마다 곱셈의 결과를 출력한다. 두 번째 곱셈기를 기존의 선형 시스톨릭 곱셈기들과 비교 분석한 결과, 하드웨어, 계산지연 시간, 그리고 처리율에 있어 각각 43%, 83%, 그리고 50%의 성능 개선을 보인다. 또한 제안된 곱셈기들은 높은 규칙성과 모듈성을 가지기 때문에 VLSI 구현에 매우 적합하다. 따라서 GF(2$^{m}$ ) 응용을 위해, 본 연구에서 제안된 곱셈기들을 사용하면 최소의 하드웨어 사용으로 최대의 성능을 얻을 수 있다.

Keywords

References

  1. IEEE Trans. Inform. Theory v.28 Bit-serial Reed- Solomon encoders E.R. Berlekamp https://doi.org/10.1109/TIT.1982.1056591
  2. SIAM J. Disc. Math. v.3 Bit serial multiplication in finite fields M. Wang;I.F. Blake https://doi.org/10.1137/0403012
  3. IEEE. Trans. Computers v.42 A modified Massey-Omura parallel multiplier for a class of finite fields M.A. Hasan;M.Z. Wang;V.K. Bhargava https://doi.org/10.1109/12.257715
  4. IEEE. Trans. Computers v.50 An efficient Optimal normal basis type Ⅱ multiplier B. Sunar;C.K. Koc https://doi.org/10.1109/12.902754
  5. Information and computation v.83 Structure of parallel multipliers for a class of finite fields GF($2^m$) T. Itoh;S. Tsujii https://doi.org/10.1016/0890-5401(89)90045-X
  6. Applications of finite fields A.J. Menezes
  7. IEEE Trans. Circuits Syst. v.38 Systolic array implementation of multipliers for finite fields GF($2^m$) C.L. Wang;J.L Lin https://doi.org/10.1109/31.135751
  8. IEEE Trans. Computers v.C-33 Systolic multipliers for finite fields GF($2^m$) C.S. Yeh;I.S. Reed;T.K Troung https://doi.org/10.1109/TC.1984.1676441
  9. IEE Proc. Comput. Digit. Tech. v.144 Dual basis systolic multipliers for GF($2^m$) S.T.J. Fenn;M. Benaissa;D. Taylor https://doi.org/10.1049/ip-cdt:19970660
  10. IEEE Trans. Computers v.50 Bit parallel systolic multipliers for GF($2^m$) feilds defined by all one and equally spaced polynomials C.Y. Lee;E.H. Lu;J.Y. Lee. https://doi.org/10.1109/12.926154
  11. IEEE Trans. Computers v.43 A systolic power sum circuit for GF($2^m$) C.W. Wei https://doi.org/10.1109/12.262128
  12. IEEE Trans. VLSI Syst. v.6 Efficient semisystolic architectures for finite field arithmetic S. K. Jain;L. Song;K.K. Parhi https://doi.org/10.1109/92.661252
  13. IEEE Trans. Computers v.47 Systolic array implementation of Euclid's algorithm for inversion and division in GF($2^m$) J.H. Guo;C.L. Wang https://doi.org/10.1109/12.729800
  14. IEEE Trans. Computers v.34 VLSI architecture for computing multiplications and inverses in GF($2^m$) C.C. Wang;T.K. Truong;H.M. Shao;L.J. Deutsch;J.K. Omura;I.S. Reed https://doi.org/10.1109/TC.1985.1676616
  15. IEEE Trans. Circuits Syst. Ⅱ v.48 Low complexity bit parallel systolic architecture for computing $AB^2$+C in a class of finite field GF($2^m$) C.Y. LEE;E.H. Lu;L.F. Sun
  16. IEEE Trans. VLSI Syst. v.8 Two systolic architectures for modular multiplication W.C. Tsai;C.B. Shung;S.J. Wang https://doi.org/10.1109/92.820767
  17. IEEE Trans. Computers v.51 A new construction of Massey-Omura parallel multiolier over GF($2^m$) A. Reyhani-Masole;M.A. Hasan https://doi.org/10.1109/TC.2002.1004590
  18. IEEE Trans. Computers v.47 Low complexity bit-parallel canonical and normal basis multipliers for a class of finite fields C.K. Koc;B. Sunar https://doi.org/10.1109/12.660172
  19. IEEE Trans. Computers v.47 Efficient multiplier architectures for Galois fields GF($2^m$) C. Paar;P. Fleischmann;P. Roelse https://doi.org/10.1109/12.663762
  20. IEEE Trans. Computers v.47 A new representation of elements of finite fields GF($2^m$) yielding small complexity arithmetic circuits G. Drolet https://doi.org/10.1109/12.713313
  21. IEE Proc. Comput. Digit. Tech. v.144 Bit-serial multipilcation in GF($2^m$) using irreducible all one polynomials S.T.J. Fenn;M.G. Parker;M. Benaissa;D. Taylor https://doi.org/10.1049/ip-cdt:19971586
  22. Principles of CMOS VLSI Design: A System Perspective N. Weste;K. Eshraghian