References
- IEEE Trans. Inform. Theory v.28 Bit-serial Reed- Solomon encoders E.R. Berlekamp https://doi.org/10.1109/TIT.1982.1056591
- SIAM J. Disc. Math. v.3 Bit serial multiplication in finite fields M. Wang;I.F. Blake https://doi.org/10.1137/0403012
- IEEE. Trans. Computers v.42 A modified Massey-Omura parallel multiplier for a class of finite fields M.A. Hasan;M.Z. Wang;V.K. Bhargava https://doi.org/10.1109/12.257715
- IEEE. Trans. Computers v.50 An efficient Optimal normal basis type Ⅱ multiplier B. Sunar;C.K. Koc https://doi.org/10.1109/12.902754
-
Information and computation
v.83
Structure of parallel multipliers for a class of finite fields GF(
$2^m$ ) T. Itoh;S. Tsujii https://doi.org/10.1016/0890-5401(89)90045-X - Applications of finite fields A.J. Menezes
-
IEEE Trans. Circuits Syst.
v.38
Systolic array implementation of multipliers for finite fields GF(
$2^m$ ) C.L. Wang;J.L Lin https://doi.org/10.1109/31.135751 -
IEEE Trans. Computers
v.C-33
Systolic multipliers for finite fields GF(
$2^m$ ) C.S. Yeh;I.S. Reed;T.K Troung https://doi.org/10.1109/TC.1984.1676441 -
IEE Proc. Comput. Digit. Tech.
v.144
Dual basis systolic multipliers for GF(
$2^m$ ) S.T.J. Fenn;M. Benaissa;D. Taylor https://doi.org/10.1049/ip-cdt:19970660 -
IEEE Trans. Computers
v.50
Bit parallel systolic multipliers for GF(
$2^m$ ) feilds defined by all one and equally spaced polynomials C.Y. Lee;E.H. Lu;J.Y. Lee. https://doi.org/10.1109/12.926154 -
IEEE Trans. Computers
v.43
A systolic power sum circuit for GF(
$2^m$ ) C.W. Wei https://doi.org/10.1109/12.262128 - IEEE Trans. VLSI Syst. v.6 Efficient semisystolic architectures for finite field arithmetic S. K. Jain;L. Song;K.K. Parhi https://doi.org/10.1109/92.661252
-
IEEE Trans. Computers
v.47
Systolic array implementation of Euclid's algorithm for inversion and division in GF(
$2^m$ ) J.H. Guo;C.L. Wang https://doi.org/10.1109/12.729800 -
IEEE Trans. Computers
v.34
VLSI architecture for computing multiplications and inverses in GF(
$2^m$ ) C.C. Wang;T.K. Truong;H.M. Shao;L.J. Deutsch;J.K. Omura;I.S. Reed https://doi.org/10.1109/TC.1985.1676616 -
IEEE Trans. Circuits Syst. Ⅱ
v.48
Low complexity bit parallel systolic architecture for computing
$AB^2$ +C in a class of finite field GF($2^m$ ) C.Y. LEE;E.H. Lu;L.F. Sun - IEEE Trans. VLSI Syst. v.8 Two systolic architectures for modular multiplication W.C. Tsai;C.B. Shung;S.J. Wang https://doi.org/10.1109/92.820767
-
IEEE Trans. Computers
v.51
A new construction of Massey-Omura parallel multiolier over GF(
$2^m$ ) A. Reyhani-Masole;M.A. Hasan https://doi.org/10.1109/TC.2002.1004590 - IEEE Trans. Computers v.47 Low complexity bit-parallel canonical and normal basis multipliers for a class of finite fields C.K. Koc;B. Sunar https://doi.org/10.1109/12.660172
-
IEEE Trans. Computers
v.47
Efficient multiplier architectures for Galois fields GF(
$2^m$ ) C. Paar;P. Fleischmann;P. Roelse https://doi.org/10.1109/12.663762 -
IEEE Trans. Computers
v.47
A new representation of elements of finite fields GF(
$2^m$ ) yielding small complexity arithmetic circuits G. Drolet https://doi.org/10.1109/12.713313 -
IEE Proc. Comput. Digit. Tech.
v.144
Bit-serial multipilcation in GF(
$2^m$ ) using irreducible all one polynomials S.T.J. Fenn;M.G. Parker;M. Benaissa;D. Taylor https://doi.org/10.1049/ip-cdt:19971586 - Principles of CMOS VLSI Design: A System Perspective N. Weste;K. Eshraghian