Nanofabrication of Microbial Polyester by Electrospinning Promotes Cell Attachment

  • Lee, Ik-Sang (Department Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Kwon, Oh-Hyeong (Department Polymer Science and Engineering, Kumoh National Institute of Technolog) ;
  • Wan Meng (Department of Polymer Science, Kyungpook National University) ;
  • Kang, Inn-Kyu (Department of Polymer Science, Kyungpook National University) ;
  • Yoshihiro Ito (Kanagawa Academy of Science and Technology)
  • Published : 2004.08.01

Abstract

The biodegradable and biocompatible poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a copolymer of microbial polyester, was fabricated as nanofibrous mats by electrospinning. Image analysis of the electrospun nanofibers fabricated from a 2 wt% 2,2,2-trifluoroethanol solution revealed a unimodal distribution pattern of fiber diameters with an observed average diameter of ca. 185 nm. The fiber diameter of electrospun fabrics could be controlled by adjusting the electro spinning parameters, including the solvent composition, concentration, applied voltage, and tip-to-collector distance. Chondrocytes derived from rabbit ear were cultured on a PHBV cast film and an electrospun PHBV nano-fibrous mat. After incubation for 2 h, the percentages of attached chondrocytes on the surfaces of the flat PHBV film and the PHBV nanofibrous mat were 19.0 and 30.1 %, respectively. On the surface of the electrospun PHBV fabric, more chondrocytes were attached and appeared to have a much greater spreaded morphology than did that of the flat PHBV cast film in the early culture stage. The electro spun PHBV nanofabric provides an attractive structure for the attachment and growth of chondrocytes as cell culture surfaces for tissue engineering.

Keywords

References

  1. Science v.260 R. Langer;J. P. Vacanti https://doi.org/10.1126/science.8493529
  2. Polymer v.35 A. G. Mikos;A. J. Thorsen;L. A. Czerwonka;Y. Bao;R. Langer;D. N. Winslow;J. P. Vacanti https://doi.org/10.1016/0032-3861(94)90953-9
  3. J. Biomed. Mater. Res. (Applied Biomaterals) v.53 Y. S. Nam;J. J. Yoon;T. G. Park https://doi.org/10.1002/(SICI)1097-4636(2000)53:1<1::AID-JBM1>3.0.CO;2-R
  4. Biomaterials v.17 D. J. Mooney;D. F. Baldwin;N. P. Suh;J. P. Vacanti;R. Langer https://doi.org/10.1016/0142-9612(96)87284-X
  5. J. Biomed. Mater. Res. v.42 L. D. Harris;B. S. Kim;D. J. Mooney https://doi.org/10.1002/(SICI)1097-4636(19981205)42:3<396::AID-JBM7>3.0.CO;2-E
  6. Polymer v.36 K. Whang;C. H. Thomas;K. E. Healy;G. Nuber https://doi.org/10.1016/0032-3861(95)93115-3
  7. Biomaterials v.25 X. M. Mo;C. Y. Xu;M. Kotaki;S. Ramakrishna https://doi.org/10.1016/j.biomaterials.2003.08.042
  8. J. Biomed. Mater. Res. v.46 P. X. Ma;R. Zhang https://doi.org/10.1002/(SICI)1097-4636(199907)46:1<60::AID-JBM7>3.0.CO;2-H
  9. Proc. Natl. Acad. Sci USA v.8 J. D. Hartgerink;E. Beniash;S. I. Stupp
  10. Angew. Chem. Int. Ed. v.40 X. Yan;G. Liu;F. Liu;B. Zhang;H. Peng;A. B. Pakhomov;C. Y. Wong https://doi.org/10.1002/1521-3773(20011001)40:19<3593::AID-ANIE3593>3.0.CO;2-U
  11. Polymer v.40 H. Fong;I. Chun;D. H. Reneker https://doi.org/10.1016/S0032-3861(99)00068-3
  12. Biomacromolecules v.3 J. A. Matthews;G. E. Wnek;D. G. Simposn;G. L. Bowlin https://doi.org/10.1021/bm015533u
  13. J. Electrostatics v.35 J. Doshi;D. H. Reneker https://doi.org/10.1016/0304-3886(95)00041-8
  14. Biomaterials v.25 S R. Bhattarai;N. Bhattarai;H. K. Yi;P. H. Whang;D. I. Cha;H. Y. Kim https://doi.org/10.1016/j.biomaterials.2003.09.043
  15. Biomaterials v.24 H. Yoshimato;Y. M. Shin;H. Terai;J. P. Vacanti https://doi.org/10.1016/S0142-9612(02)00635-X
  16. Biomacromolecules v.5 W. K. Son;J. H. Youk;W. H. Park https://doi.org/10.1021/bm034312g
  17. Nano Letter v.3 G. E. Wnek;M. E. Carr;D. G. Simpson;G. L. Bowlin https://doi.org/10.1021/nl025866c
  18. J. Control. Release v.92 J. Zeng;X. Xu;X. Chen;Q. Ling;X. Bian;L. Yang;X. Jing https://doi.org/10.1016/S0168-3659(03)00372-9
  19. Biomaterials v.25 H.-J. Jin;J. Chen;V. Karageorgiou;G. H. Altman;D. L. Kaplan https://doi.org/10.1016/S0142-9612(03)00609-4
  20. Polymer v.43 X. Zong;K. S. Kim;D. Fang;S. Ran;B. S. Hsiaoa;B. Chu https://doi.org/10.1016/S0032-3861(02)00275-6
  21. Polymer v.43 D. H. Reneker;W. Kataphinan;A. Theron;E. Zussman;A. L. Yarin https://doi.org/10.1016/S0032-3861(02)00562-1
  22. Biomacromolecules v.4 X. Zong;S. Ran;K. S. Kim;D. Fang;B. S. Hsiaoa;B. Chu https://doi.org/10.1021/bm025717o
  23. Trends in Biotechnol. v.16 A. Steinbuchel;B. Fuchtenbusch https://doi.org/10.1016/S0167-7799(98)01194-9
  24. Proc. Roy. Soc. London v.A313 G. I. Taylor
  25. J. Biomed. Mater. Res. v.23 I.-K. Kang;Y. Ito;M. Sisido;Y. Imanishi https://doi.org/10.1002/jbm.820230207
  26. Polymer v.40 C. J. Buchko;L. C. Chen;Y. Shen;D. C. Martin https://doi.org/10.1016/S0032-3861(98)00866-0
  27. Tissue Eng. v.7 P. X. Ma;J. W. Choi https://doi.org/10.1089/107632701300003269
  28. J. Biomed. Mater. Res. v.67A K. M. Woo;V. J. Chen;P. X. Ma https://doi.org/10.1002/jbm.a.10098