Abstract
This paper describes the method for detecting vehicles in the rear and rear-side at night by using headlight features. A headlight is the outstanding feature that can be used to discriminate a vehicle from a dark background. In the segmentation process, a night image is transformed to a binary image that consists of black background and white regions by gray-level thresholding, and noise in the binary image is eliminated by a morphological operation. In the feature extraction process, the geometric features and moment invariant features of a headlight are defined, and they are measured in each segmented region. Regions that are not appropriate to a headlight are filtered by using geometric feature measurement. In region classification, a pair of headlights is detected by using relational features based on the symmetry of a pair of headlights. Experimental results show that this method is very applicable to an approaching vehicle detection system at nighttime.
본 논문은 전조등의 특징을 이용하여 야간에 측후방에서 다가오는 차량을 탐지하는 방법을 설명한다. 야간 차량의 전조등은 검은색 배경의 야간 도로 영상에서 측후방 차량을 탐지하기 위한 좋은 특징이다. 입력 영상은 임계값 처리기법에 의해 검은색 배경과 흰색 영역으로 이루어지는 이진 영상으로 변환되고, 모폴로지 연산 중 열림 연산을 이용하여 잡음을 제거한다. 분할된 흰색 영역들에 대해 기하학적 특징과 모멘트 특징을 이용하여 전조등의 특징량을 측정하고, 의사 결정 트리에 의해 전조등 후보로 적당한 대상체들을 분류한다. 대상체들간의 위상학적 관계를 분석하여 한 쌍의 전조등을 탈지함으로써 측후방 차량을 탐지한다. 실험 결과 전조등 특징을 이용한 야간 측후방 차량 탐지 방법이 효과적임을 알 수 있었다. 제안한 방법은 야간 측후방 추돌경보시스템에 적용될 수 있으며, 향후에는 스테레오비전시스템을 사용하여 전조등 탐지 기반의 측후방 차량 거리 및 위치 측정에 관한 연구를 수행할 것이다.