A New Method for Classification of Structural Textures

  • Lee, Bongkyu (Department of Computer & Statistics, Cheju National University)
  • Published : 2004.03.01

Abstract

In this paper, we present a new method that combines the characteristics of edge in-formation and second-order neural networks for the classification of structural textures. The edges of a texture are extracted using an edge detection approach. From this edge information, classification features called second-order features are obtained. These features are fed into a second-order neural network for training and subsequent classification. It will be shown that the main disadvantage of using structural methods in texture classifications, namely, the difficulty of the extraction of texels, is overcome by the proposed method.

Keywords

References

  1. Fudamentals of Digital Image Processing A. K. Jain
  2. Applied Optics v.30 Image processing of human corneal endothe lium gase a learning network W. Zhang;A. Hasegawa;K. Itoh;Y. Ichioka https://doi.org/10.1364/AO.30.004211
  3. Pattern Recognition v.24 no.4 Statistical gemetrical features for texture classification Y. Q. Chen;M. S. Nixon;D. W. Thomas
  4. IEEE Trans. on PAMI v.11 no.7 Multiresoultion feature extraction and selection for texture segmentation M. Unser;M. Eden https://doi.org/10.1109/34.192466
  5. IEEE Trans. on PAMI v.2 no.2 Decorrelation methods of texture feature extraction O. D. Faugeras;W. K. Pratt https://doi.org/10.1109/TPAMI.1980.4767031
  6. IEEE Trans. on PAMI v.18 no.7 Periodictity, direction-ality and randomness: wold features for image modeling and retrieval F. Liu;R. W. Picard https://doi.org/10.1109/34.506794
  7. Pattern Recognition v.25 no.2 Texture Classification and segmentation using multiresolution simultaneous autoregressive models J. Mao;A. K. Jain https://doi.org/10.1016/0031-3203(92)90099-5
  8. IEEE Trans. on PAMI v.1 no.3 Texture analysis using generalized cooccurrence matrices L. S. Davis;S. A. Johns;J. K. Aggarwal https://doi.org/10.1109/TPAMI.1979.4766921
  9. IEEE Trans. on System, Man and Cybernetics v.8 no.6 Texture features corresponding to visual perception H. Tamura;S. Mori;T. Yamawaki https://doi.org/10.1109/TSMC.1978.4309999
  10. Textures P. Brodatz
  11. Neural Networks v.8 no.6 A combined neural network approach for texture classification P. P. Raghu;R. Poongodi;B. Yegnanarayana https://doi.org/10.1016/0893-6080(95)00013-P
  12. Proc. of IEEE v.67 no.5 Statistical and structural approaches to texture R. M. Haralick
  13. CVGIP: image understanding v.57 A review of recent texture segmentation and feature extraction techniques T. R. Reed;J. M. Hans Du Buf https://doi.org/10.1006/ciun.1993.1024
  14. IEEE Trans. on PAMI v.5 no.1 Markov random field texture models G. R. Gross;A. K. Jain https://doi.org/10.1109/TPAMI.1983.4767341
  15. IEEE Trans. on System, Man and Cybernetics v.15 Texture synthesis and compression using Gaussian-Markov random field models R. Chellapa;S. Chatterjee;R. Bagdazian https://doi.org/10.1109/TSMC.1985.6313361
  16. IEEE Trans. on PAMI v.17 no.10 Texture classification using noncausal hidden markov models B. R. Povlow;S. M. Dunn https://doi.org/10.1109/34.464564
  17. IEEE Trans. on PAMI v.18 no.11 Texture modeling by multiple pairwise pixel interactions G. L. Gimel`farb
  18. IEEE Trans. on PAMI v.2 no.3 A theoretical comparison of texture algorithms R. W. Conners;C. A. Harlow https://doi.org/10.1109/TPAMI.1980.4767008
  19. IEEE Trans. on PAMI v.8 no.1 Sum and difference histograms for texture classification M. Unser https://doi.org/10.1109/TPAMI.1986.4767760
  20. IEEE Trans. on PAMI v.12 no.1 Multichannel texture analysis using localized spatial filters A. C. Bovik;M. Clark;W. S. Geisler https://doi.org/10.1109/34.41384
  21. IEEE Trans. on Signal Processing v.39 no.9 Analysis of multichannel narrowband filters for image texture segmentation A. C. Bovik https://doi.org/10.1109/78.134435
  22. IEEE Trans. on PAMI v.20 no.7 Rotation invariant texture fearures and their use in automatic script identification T. N. Tan https://doi.org/10.1109/34.689305
  23. Pattern Recognition v.24 no.12 Unsupervised texture segmentation using Gabor filters A. K. Jain;F. Farrokhnia https://doi.org/10.1016/0031-3203(91)90143-S
  24. IEEE Trans. on PAMI v.18 no.8 Texture features for browsing and retrieval of image data B. S. Manjuath;W. Y. Ma https://doi.org/10.1109/34.531803
  25. Proc. IEEE ICIP95 Rotation invariant texture classification using modified Gabor filters G. M. Haley;B. S. Manjuath
  26. IEEE Trans. on Image Processing v.2 no.4 Texture analysis and classification with tree structured wavelet transform T. Chang;C.-C. J. Kuo https://doi.org/10.1109/83.242353
  27. Proc. IEEE Int'l Conf Image Processing '95 v.Ⅱ A comparison of wavelet features for texture annotation W. Y Ma;B. S. Manjuath
  28. Proc. IJCNN'89 v.Ⅰ A neural network architecture for texture segmentation and labeling N. R. Dupaguntla;V. Vemuri
  29. Proc. IJCNN '90 v.Ⅰ A texture classifier based on neural network principles V. Ari
  30. Proc. ICASSP '92 v.Ⅳ Neural network recognition of textured images using third order cumulants as functional links F. A. DeCosta;M. F. Chouikha
  31. IEEE Trans. on PAMI v.18 no.2 Learning texture discrimination masks A. K. Jain;K. Karu https://doi.org/10.1109/34.481543
  32. Computer Graphics and Image Processing v.9 On the use of fourier phase features for texture discrimination J. O. Eklundh
  33. IEEE Trans. on Signal Processing A Unified texture model based on a 2-D Wold like decomposition J. M. Francos;A. Z. Meiri;B. Porat
  34. IEEE Trans. on Image Processing Maximum likelihood parameter estimation of textures using a Wold decomposition based model J. M. Francos;A. Narasimhan;J.W. Woods
  35. Proc. of International Conference on Pattern Recognition, 80 Edge based segmentation and texture separation S. Grinaker
  36. IEEE Trans. on PAMI v.11 no.4 Unsupervised segmentation of textured images by edge detection in multidimensional features A. Khotanzad;J. Y Chen https://doi.org/10.1109/34.19038
  37. Proc. of International Conference on Pattern Recognition, 92 Texture image classification and segmentation using rank order clustering D. Patel;T. J. Stonham
  38. IEEE Trans. on System, Man and Cybernetics v.11 Image segmentation by texture using pyramid node linking M. Pietikainen;A. Rosenfeld https://doi.org/10.1109/TSMC.1981.4308623
  39. Computer, Graphics and Image Processing Segmentation by texture using a co-occurrence matrix P. C. Chen;T. Pavlidis
  40. Proc. IEEE Conf. Visualization Towards a texture naming system: identifying relevant dimensions of texture A. R. Rao;G. L. Lohse
  41. Applied Optics v.26 Learning, invariance and generalization in high-order neural networks C. L. Giles;T. Maxwell
  42. IEEE TRans. on Neural Networks v.4 no.2 Coarse-coded higher-order neural networks for PSRI object recognition L. Spirkovska;M. B. Reid https://doi.org/10.1109/72.207615
  43. IEEE Trans. on PAMI v.15 no.8 Pattern recognition properties of various feature spaces for higher order neural networks W. A. C. Schmidt;J. P. Davis https://doi.org/10.1109/34.236250
  44. Int. Journal of Neural, Parallel and Scientific Computation v.3 no.3 Translation, scale and rotation invariant pattern recognition using PCA and reduced second-order neural network B. Lee;S. Cho;Y Cho
  45. IEE Electronics Letters v.29 no.7 Rotation and scale invariant pattern recognition using complex log mapping and augmented second-order neural network H. Y. Kwon;B. C. Kim;H. Y. Hwang