DOI QR코드

DOI QR Code

Power Generating Characteristics of Anode-Supported SOFC fabricated by Uni-Axial Pressing and Screen Printing

일축가압/스크린인쇄 공정에 의해 제조된 음극지지형 SOFC의 출력특성

  • 정화영 (한국과학기술연구원 나노재료연구센터) ;
  • 노태욱 (한국과학기술연구원 나노재료연구센) ;
  • 김주선 (한국과학기술연구원 나노재료연구센) ;
  • 이해원 (한국과학기술연구원 나노재료연구센) ;
  • 고행진 (현대-기아 연구개발본부 연료전지개발) ;
  • 이기춘 (현대-기아 연구개발본부 연료전지개발) ;
  • 이종호 (한국과학기술연구원 나노재료연구센터)
  • Published : 2004.06.01

Abstract

To enhance the performance of anode-supported SOFC, single cell fabrication procedure was changed for better and resulting power generating characteristics of single cell were investigated. Liquid condensation process was employed for the granulation of NiO/YSZ powder mixture and the produced powder granules were compacted into anode green substrate by uni-axial pressing. YSZ electrolyte was printed on green substrate via screen-printing method and co-fired at 1400$^{\circ}C$ for 3 h. LSM/YSZ composite cathode of which the composition and heat treatment condition was adjusted to minimize the polarization#resistance with AC-impedance spectroscopy, was screen printed. The final single cell size from this multi-step procedure was 5${\times}$5 $\textrm{cm}^2$ and 10${\times}$10 $\textrm{cm}^2$. The maximum power densities of 5${\times}$5 and 10${\times}$10 single cells were about 0.45 W/$\textrm{cm}^2$ and 0.22 W/$\textrm{cm}^2$ at 800$^{\circ}C$, which are two times superior than those from single cells fabricated by the conventional process in previous our work.

음극지지형 SOFC의 성능을 향상시키기 위해 단전지 제조공정을 개선하고 그 출력특성을 평가하였다. 액상응결 공정(Liquid Condensation Process : LCP)과 일축가압성형공정을 통하여 NiO/YSZ 복합체 음극기판을 제조하고 위에 YSZ 전해질을 스크린 인쇄한 후 140$0^{\circ}C$에서 3시간동안 동시소결하여 음극/전해질 기판을 제조하였다. 또한 LSM/YSZ 양극층은 임피던스 분석을 통해 분극저항이 최소가 되는 조성 및 열처리 조건을 선택하여 스크린 인쇄법을 이용해 구성하였고 이러한 적층공정을 거쳐 최종적으로 5${\times}$5와 l0${\times}$10 $\textrm{cm}^2$ 크기의 단전지를 제조하였다. 제조된 단전지의 출력특성을 측정한 결과 5${\times}$5와 10${\times}$10 단전지는 80$0^{\circ}C$에서 약 0.45W/$\textrm{cm}^2$ 와 0.22 W/$\textrm{cm}^2$의 최대출력밀도를 각각 나타내어 선행연구에서 기존공정으로 제조된 단전지에 비해 2배 이상 향상된 좋은 성능을 나타내었다.

Keywords

References

  1. J. Am. Ceram. Soc. v.76 no.3 Ceramic Fuel Cells N. Q. Minh https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  2. Science and Technology of Ceramic Fuel Cells N. Q. Minh;T. Takahashi
  3. Solid State Ioncis v.99 Electrode Supported Solid Oxide Fuel Cells : Electrolyte Films Prepared by DC Magnetron Sputtering P. K. Srivastava;T. Quach;Y. Y. Duan;R. Donelson;S. P. Jiang;F. T. Ciacchi;S. P. S.Badwal https://doi.org/10.1016/S0167-2738(97)00248-8
  4. J. Electrochem. Soc. v.144 no.5 Low-Temperature Solid Oxide Fuel Cells Utilizing Thin Bilayer Electrolytes T. Tsai;E. Perry;S.Barnett https://doi.org/10.1149/1.1837635
  5. Solid State Ionics v.148 Quantitative Analysis of Microstructure and its Related Electrical Property of SOFC Anode, Ni-YSZ Cermet J.-H. Lee;H. Moon;H. W. Lee;J. Kim;J. D. Kim;K. H. Yoon https://doi.org/10.1016/S0167-2738(02)00050-4
  6. J. Kor. Ceram. Soc. v.37 no.9 Power Generating Characteristics and Long Term Stability of the Anode Supporting Type SOFC J.-H. Lee;G. D. Kim;Y. B. Sohn;H.-W. Lee;S. W. Kim;H. S. Song;G. H. Kim
  7. J. Kor. Ceram. Soc. v.37 no.12 Correlation between the Microstructure and the Electrical Conductivity of SOFC Anode, Ni-YSZ: II.Temporal Variation H. Moon;H.-W. Lee;J.-H. Lee;K.-H. Yoon
  8. Solid State Ionics v.158 The Impact of Anode Microstructure on the Power Generating Characteristics of SOFC J.-H. Lee;J. W. Heo;D. S. Lee;J. Kim;G. H. Kim;H. W. Lee;H. S. Song;J. H. Moon https://doi.org/10.1016/S0167-2738(02)00915-3
  9. J. Am. Ceram. Soc. v.83 no.7 Novel Powder-Processing Methods for Advanced Ceramics W. M. Sigmund;N. S. Bell;L. Bergstroem https://doi.org/10.1111/j.1151-2916.2000.tb01432.x
  10. J. Am. Ceram. Soc. v.83 no.10 Colloidal Processing of Ceramics J. A. Lewis https://doi.org/10.1111/j.1151-2916.2000.tb01560.x
  11. Solid State Ionics v.132 Properties of Ni/YSZ Cermet as Anode for SOFC H. Koide;Y. Someya;T. Yoshida;T. Maruyama https://doi.org/10.1016/S0167-2738(00)00652-4
  12. J. Mater. Res. v.12 Material Characterization in Support of the Development of an Anode Substarate for Solid Oxide Fuel Cells D. Simwonis;A. Naoumidis;F. F. Dias;J. Linke;A. Morpoulou https://doi.org/10.1557/JMR.1997.0207
  13. Solid State Ionics v.57 LaMn$O_3$ Air Cathodes Containing Zr$O_2$ Electrolyte for High Temperature Solid Oxide Fuel Cells T. Kenjo;M. Nishiya https://doi.org/10.1016/0167-2738(92)90161-H
  14. J. Mater. Sci. v.36 Functionally Graded Cathodes for Solid Oxide Fuel Cells N. T. Hart;N. P. Brandon;M. J. Day;J. E. Shemilt https://doi.org/10.1023/A:1004857104328
  15. J. Kor. Ceram. Soc. v.34 no.10 Preparation of (La,Sr)Mn$O_3$ Powder by Glycine-Nitrate Process Using Oxide as Starting Materials J. D. Kim;j. W. Moon;G. D. Kim;C. E. Kim
  16. J. Kor. Ceram. Soc. v.37 no.3 The Effect of Paricle Size and Ratio of LSM-YSZ Powders on SOFC Cathod Properties J. K. Kim;G. D. Kim;J. A. Park
  17. J. Kor. Ceram. Soc. v.38 no.5 Effect of YSZ Particle Size and Sintering Temperature on the Microstructure and Impedance Preperty of Ni-YSZ Anode for Solid Oxide Fuel Cell J. W. Moon;G. D. Kim;K. T. Lee;H. L. Lee
  18. J. Electrochem. Soc. v.144 no.1 Electrode Properties of Sr-Doped LaMn$O_3$ on Yttria-Stabilized Zir-conia. II. Electrode Kinetics F. H. van Heuveln;H. J. M. Bouwmeester https://doi.org/10.1149/1.1837375
  19. Solid State Ionics v.110 Oxygen Transfer Processes in (La,Sr)Mn$O_3/Y_2O_3$-Stabilized Zr$O-2$ Cathodes: an Impedance Spectroscopy Study E. P. Murray;T. Tsai;S. A. Barnett https://doi.org/10.1016/S0167-2738(98)00142-8
  20. Solid State Ionics v.143 Characterization of LSM-YSZ Composite Electrode by AC Impedance Spectroscopy J. K. Kim;G. D. Kim;J. W. Moon;Y. I. Park;H. W. Lee;K. Kobayashi;M. Nagai;C. E. Kim https://doi.org/10.1016/S0167-2738(01)00877-3