DOI QR코드

DOI QR Code

FINSLER SPACES WITH INFINITE SERIES (α, β)-METRIC

  • Published : 2004.05.01

Abstract

In the present paper, we treat an infinite series ($\alpha$, $\beta$)-metric L =$\beta$$^2$/($\beta$-$\alpha$). First, we find the conditions that a Finsler metric F$^{n}$ with the metric above be a Berwald space, a Douglas space, and a projectively flat Finsler space, respectively. Next, we investigate the condition that a two-dimensional Finsler space with the metric above be a Landsbeg space. Then the differential equations of the geodesics are also discussed.

Keywords

References

  1. Rep. Fac. Sci. Kagoshima Univ.(Math. Phys. Chem.) v.23 On Matsumoto's Finsler space with time measure T.Aikou;M.Hashiguchi;K.Yamauchi
  2. The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology P.L.Antonelli;R.S.Ingarden;M.Matsumoto
  3. Publ. Math. Debrecen v.48 Reduction theorems of certain Landsberg spaces to Berwald spaces S.Bacso;M.Matsumoto
  4. Publ. Math. Debrecen v.51 On Finsler spaces of Douglas type. A generalization to the notion of Berwald space S.Bacso;M.Matsumoto
  5. Tensor, N.S. v.55 Projective changes between Finsler spaces with (α,β)-metric S.Bacso;M.Matsumoto
  6. J. Korean Math. Soc. v.10 On Landsberg spaces of two dimensions with(α,β)-metric M.Hashiguchi;S.Hojo;M.Matsumoto
  7. Tensor, N.S. v.57 Landsberg spaces of dimension two with(α,β)-metric M.Hashiguchi;S.Hojo;M.Matsumoto
  8. J. Hokkaido Univ. Eduction(Sect.Ⅱ A 46(1995)) On Finsler spaces with(α,β)-metric. Regularity, geodesics and main scalars N.Kitayama;M.Azuma;M.Mausumoto
  9. Foundations of Finsler Geometry and Special Finsler Spaces M.Matsumoto
  10. Rep. Math. Phys. v.28 Randers spaces of constant curvature M.Matsumoto https://doi.org/10.1016/0034-4877(89)90047-5
  11. Tensor, N.S. v.50 The Berwald connection of a Finsler space with an(α,β)-metric M.Matsumoto
  12. Rep. Math. Phys. v.30 Projectively flat Finsler spaces with(α,β)-metric M.Matsumoto https://doi.org/10.1016/0034-4877(91)90035-L
  13. Tensor, N.S. v.50 A special class of locally Minkowski spaces with(α,β)-metric and conformally flat Kropina spaces M.Matsumoto
  14. Rep. Math. Phys. v.31 Theory of Finsler spaces with(α,β)-metric M.Matsumoto https://doi.org/10.1016/0034-4877(92)90005-L
  15. Math. Comput. Modelling v.20 Geodesics of two-dimensional Finsler spaces M.Matsumoto
  16. Tensor, N.S. v.60 Finsler spaces with(α,β)-metric of Douglas type M.Matsumoto
  17. Roumaine Math. Pures Appl. v.42 Equations of geodesics in two-dimensional Finsler spaces with(α,β)-metric M.Matsumoto;H.S.Park
  18. Commun. Korean Math. Soc. v.14 no.2 On projectively flat Finsler spaces with(α,β)-metric H.S.Park;I.Y.Lee
  19. J. Korean Math. Soc. v.37 no.1 On the Landsberg spaces of diemesion two with a special(α,β)-metric H.S.Park;I.Y.Lee
  20. Indian J. pure and appl. Math. v.34 no.1 Finsler space with the general approximate Matsumoto metric H.S.Park;I.Y.Lee;C.K.Park
  21. Tensor. N.S. v.31 On Finsler spaces with Rander's metric C.Shibata;H.Shimada;M.Azuma;H.Yasuda
  22. Rep. Math. Phys. v.11 On Randers spaces of scalar curvature H.Yasuda;H.Shimada https://doi.org/10.1016/0034-4877(77)90075-1

Cited by

  1. RETRACTED: On two subclasses of -metrics being projectively related vol.62, pp.2, 2012, https://doi.org/10.1016/j.geomphys.2011.10.004
  2. Projectively Flat Finsler Space of Douglas Type with Weakly-Berwald (α,β)-Metric vol.18, 2017, https://doi.org/10.18052/www.scipress.com/IJPMS.18.1