Expression of a Recombinant Bacillus thuringiensis $\delta$-Endotoxin Fused with Enhanced Green Fluorescent Protein in Escherichia coli

  • Je, Yeon-Ho (School of Agricultural Biotechnology, Seoul National University) ;
  • Roh, Jong-Yul (School of Agricultural Biotechnology, Seoul National University) ;
  • Li, Ming-Shun (School of Agricultural Biotechnology, Seoul National University) ;
  • Chang, Jin-Hee (School of Agricultural Biotechnology, Seoul National University) ;
  • Shim, Hee-Jin (School of Agricultural Biotechnology, Seoul National University) ;
  • Jin, Byung-Rae (College of National Resources and Life Science, Dong-A University) ;
  • Boo, Kyung-Saeng (School of Agricultural Biotechnology, Seoul National University)
  • Published : 2004.06.01

Abstract

The expression of a fusion protein comprised of the B. thuringiensis crystal protein, Cry1Ac, and enhanced green fluorescent protein (EGFP) in Escherichia coli XLl-blue was examined. Three recombinant plasmids were transformed into E. coli XL1-blue and named as ProAc/Ec, MuEGFP/Ec and ProMu-EGFP/Ec, respectively. All transformants were observed by light and fluorescence microscopy at mid-log phase. The expression in E. coli transformants, ProMu-EGFP/Ec and MuEGFP/Ec, exhibited bright enough fluorescence to be observed. Furthermore, ProMu-EGFP/Ec produced fluorescent inclusions, which may have been recombinant crystals between EGFP and Cry1Ac while MuEGFP/Ec expressed soluble EGFP in cell. In SDS-PAGE, ProAc/Ec had 130 kDa crystal protein band and MuEGFP/Ec had thick 27 kDa EGFP band. However, ProMu-EGFP/Ec had about 150 kDa fusion protein band. Accordingly, these results indicated that a fusion protein between the B. thuringiensis crystal protein and a foreign protein under the lacZ promoter was successfully expressed as granular structure in E. coli. It is suggested that the E. coli expression system by N-terminal fusion of B. thuringiensis crystal protein may be useful as excellent means for fusion expression and characterization of B. thuringiensis fusion crystal protein.

Keywords

References

  1. Adang, M. J., M. J. Staver, T. A. Rocheleau, J. Leighton, R. F. Barker and D. V. Thompson (1985) Characterized full-length and truncated plasmid clones of the crystal protein of Bacillus thuringiensis subsp. kurstaki HD-73 and their toxicity to Manduca sexta. Gene 36,289-300 https://doi.org/10.1016/0378-1119(85)90184-2
  2. Aronson, A. I., D. Wu and C. Zhang (1995) Mutagenesis of specificity and toxicity regions of a Bacillus thuringiensis protoxin gene. J. Bacteriol. 177,4059-4065 https://doi.org/10.1128/jb.177.14.4059-4065.1995
  3. Aronson, A. I., E. S. Han, W. McGaughey and D. Johnson (1991) The solubility of inclusion proteins from Bacillus thuringiensis is dependent upon protoxin composition and is a factor in toxicity to insects. Appl. Environ. Microbiol. 57, 981-986
  4. Ben-Dov, E., S. Boussiba and A. Zaritsky (1995) Mosquito larvicidal activity of Escherichia coli with combination of genes from Bacillus thuringiensis subsp. israelensis. J. Bacteriol. 177, 2851-2857 https://doi.org/10.1128/jb.177.10.2851-2857.1995
  5. Bietlot, H. P., P. R. Carey, M. Pozsgay and H. Kaplan (1989) Isolation of carboxyl-terminal peptides from proteins by diagonal electrophoresis: application to the entomocidal toxin from Bacillus thuringiensis. Anal. Biochem. 181,212-215 https://doi.org/10.1016/0003-2697(89)90231-5
  6. Bosch, D., B. Schipper, H. van der Kleji, R. A. de Maagd and W. J. Stiekema (1994) Recombinant Bacillus thuringiensis crystal proteins with new properties: possibilities for resistance management. Bio/Iechnology 12, 915-918 https://doi.org/10.1038/nbt0994-915
  7. Brizzard, B. L., H. E. Schnepf and J. W. Kronstad (1991) Expression of the cryIB crystal protein gene of Bacillus thuringiensis. Mol. Gen. Genet. 231, 59-64 https://doi.org/10.1007/BF00293822
  8. Caramori, T. A., M. Albertini and A. Galizzi (1991) In vivo generation of hybrids between two Bacillus thuringiensis insect-toxin-encoding genes. Gene 98, 37-44 https://doi.org/10.1016/0378-1119(91)90101-G
  9. Chalfie, M., Y. Tu, G. Euskirchen, W. W. Ward and D. C. Prasher (1994) Green fluorescent protein as a marker for gene expression. Science 263,802-805
  10. Cohen, S. N., A. C. Y. Chang and L. Hsu (1972) Nonchromosomal antibiotic resistance in bacteria: Genetic transformation of Escherichia coli by R-factor DNA. Proc. Natl. Acad. Sci. USA 69, 2110-2114
  11. Cormack, B. P., R. H. Valdivia and S. Falkow (1996) FACSoptimized mutants of the green fluorescent protein. Gene 173,33-38 https://doi.org/10.1016/0378-1119(95)00685-0
  12. de Maagd, R. A., M. S. G. Kwa, H. van der Kleij, W. J. Stidkema and D. Bosch (1996) Domain III substitution in Bacillus thuringiensis 8-endotoxin CryIA(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appl. Environ. Microbiol. 62, 1537-1543
  13. Du, C., P. A. W. Martin and K. W. Nickerson (1994) Comparison of disulfide contents and solubility at alkaline pH of insecticidal and noninsecticidal Bacillus thuringiensis crystal proteins. Appl. Environ. Microbiol. 60, 3847-3853
  14. H$\ddot{o}$fte, H. and H. R. Whiteley (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53, 242-255
  15. Ge, A. Z., R. M. Pfister and D. H. Dean (1990) Hyperexpression of a Bacillus thuringiensis delta-endotoxin-encoding gene in Escherichia coli: properties of the product. Gene 93, 49-54 https://doi.org/10.1016/0378-1119(90)90134-D
  16. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
  17. Lereclus, D., O. Arantes, J. Chaufaux and M. M. Lecadet (1989) Transformation and expression of a cloned 8-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol. Lett. 60,211-218
  18. McPherson, S. A., F. J. Perlak, R. L. Fuchs, P. G. Marrone, B. Lavrik and D. A. Fischhoff (1988) Characterization of the coleopteran-specific protein gene of Bacillus thuringiensis var tenebrionis. Bio/Iechnology 6, 61-66 https://doi.org/10.1038/nbt0188-61
  19. Nagamatsu, Y., Y. Itai, C. Hatanaka, G. Funatsu and K. Hayashi (1984) A toxic fragment from the entomocidal crystal protein of Bacillus thuringiensis. Agric. BioI. Chern. 48, 611-619 https://doi.org/10.1271/bbb1961.48.611
  20. Prieto-Sams6nov, D. L., R. I. Vazquez-Pardron, C.Ayra-Pardo, J. Gonzalez-Cabrera and G. A. de la Riva (1997) Bacillus thuringiensis: from biodiversity to biotechnology. J. Ind. Microbiol. Biotechnol. 19,202-219 https://doi.org/10.1038/sj.jim.2900460
  21. Roh, J. Y., I. H. Lee, J. H. Li, M. S. Li, H. S. Kim, Y H. Je and K. S. Boo (2000) Expression of the cry1Ac1 gene under the control of the native or the $\alpha$-amylase promoters in an acrystalliferous Bacillus thuringiensis strain. Int. J. Indust. Entomol. 1, 123-129
  22. Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler and D. H. Dean (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbial. Mol. BioI. Rev. 62, 775-806
  23. Shimizu, M., K. Oshie, K. Nakamura, Y. Takada, K. Oeda and H. Ohkawa (1988) Cloning and expression in Escherichia coli of the 135-kDa insecticidal protein gene from Bacillus thuringiensis subsp. aizawai IPL7. Agric. Biol. Chern. 52, 1565-1573 https://doi.org/10.1271/bbb1961.52.1565
  24. Webb, C. D., A. Decatur, A. Teleman and R. Losick (1995) Use of green fluorescent protein for visualization of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. J. Bacterial. 177,5906-5911 https://doi.org/10.1128/jb.177.20.5906-5911.1995
  25. Yamamoto, T. and T. Iizuka (1983) Two types of entomocidal toxins in the parasporal crystals of Bacillus thuringiensis kurstaki. Arch. Biochem Biophys. 277, 223-241
  26. Yamamoto, T., A. Ehmann, J. M. Gonzalez and B. C. Carlton (1988) Expression of three genes coding for 135-kilodalton entomocidal protein in Bacillus thuringiensis kurstaki. Curr. Microbiol. 17,5-12 https://doi.org/10.1007/BF01568811
  27. Yang, T. T., L. Cheng and S. R. Kain (1996) Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein. Nucleic Acids Res. 24, 4592-4593 https://doi.org/10.1093/nar/24.22.4592