수소화 반응용 니켈 폐촉매의 재생

Regeneration of Spent Nickel Catalyst for Hydrogenation

  • 전종기 (동양대학교 생명화학공학부) ;
  • 박영권 (서울시립대학교 환경공학) ;
  • 김주식 (서울시립대학교 환경공학부)
  • 발행 : 2004.06.01

초록

수소화 반응용 니켈 폐촉매를 배소하여 산화니켈을 회수한 다음, 회수한 산화니켈을 산처리하고 침전법으로 Kieselguhr에 담지 된 니켈 촉매로 재생시켰다. 폐촉매의 배소 조건이 니켈산화물의 회수에 미치는 영향을 조사하였다. 니켈 폐촉매의 재생 과정에서 $1,000^{\circ}C$의 온도에서 배소 하였을 경우에 대부분 니켈산화물로 회수할 수 있었다. 산화니켈을 산처리하여 얻은 질산니켈을 사용하여 Kieselguhr에 담지 된 니켈 촉매를 제조하였다. 이때 조촉매의 첨가, 침전 조건 및 환원 조건 등이 재생된 촉매의 식물성 오일의 수소화 반응 성능에 미치는 영향을 조사하였다. 알카리 금속인 CaO와 희토류 금속인 $Ce_2$$O_3$를 조촉매로 첨가했을 때 수소화 반응의 활성이 증가하였다.

Nickel oxide was recovered through roasting of a spent catalyst for hydrogenation reaction. Nickel on Kieselguhr catalysts were prepared by a precipitation method after a treatment of the recovered-nickel oxide with an acid. Effects of roasting temperature of the spent catalyst on recovery of nickel oxide was investigated. Most of nickel oxide could be recovered through roasting of the spent catalyst at $1000^{\circ}C$. In regeneration of catalysts by the precipitation method after the treatment of nickel oxide with an acid, the effect of promoter, precipitation condition and reduction condition on catalytic performance in vegetable oil hydrogenation were investigated. The addition of CaO or $Ce_2$$O_3$ resulted in an increase of catalytic activity.

키워드

참고문헌

  1. Takeya, K, et at.. 1995: C, 1 Jpn. Soc. Food. Sci., 42, pp. 410-418 https://doi.org/10.3136/nskkk.42.410
  2. Takeya, K, Kawanari, M., and Konishi, R, 1996: Novel Method of Edible Oil Hydrogenation, 2. Influence of Nitrogen Gas on Hydrogenation of Com Oil, 1 Jpn. Soc. Food. Sci., 43, pp. 417-422 https://doi.org/10.3136/nskkk.43.417
  3. Balakos, M. w., and Hernandez, E. E., 1997: Catalyst Characteristics and PeIfonnance in Edible Oil Hydrogenation, Catalysis Today, 35, pp. 415-425 https://doi.org/10.1016/S0920-5861(96)00212-X
  4. Jovanovic, D., et al., 1998: Nickel Hydrogenation Catalyst for Tallow Hydrogenation and for the Selective Hydrogenation of Sunflower Seed Oil and Soybean Oil, Catal. Todny, 43, pp. 21-28
  5. Nele, M., et aI., 1999: Preparation of High Loading Silica Supported Nickel Catalyst: Simultaneous Analysis of the Precipitation and Aging Steps, Appl. Catat. A: General, 178, pp. 177-189 https://doi.org/10.1016/S0926-860X(98)00285-3
  6. Jovanovic, D., et al., 2000: The Influence of the Isomerization Reactions on the Soybean Oil Hydrogenation Process, 1. Mol. Catal. A: Chemical, 159, pp. 353-357 https://doi.org/10.1016/S1381-1169(00)00154-0
  7. Song, C. J., Park, T. J., and Moon, S. H., 1992: Properties of the Ni/Kiselguhr Catalysts Prepared by Precipitation Method, Korean J of Chern. Eng., 9, pp. 159-163 https://doi.org/10.1007/BF02705133
  8. Gonzalez-Marcos, M. P., et aI., 1997: Nickel on Silica Systems. SuIface Features and their Relationship with Support, Preparation Procedure and Nickel Content, Appl. Catat. A: General, 162, pp. 269-280 https://doi.org/10.1016/S0926-860X(97)00111-7
  9. Gonzalez-Marcos, M. P., et al' 2001; Control of the Product Distribution in the Hydrogenation of Vegetable Oils over Nickel on Silica Catalysts, The Canadian Journal of Chemical Engineering, 76, pp. 927-935 https://doi.org/10.1002/cjce.5450760510
  10. Sub, D. J., et al., 2001: Nickel-Alumina Composite Aerogels as Liquid-Phase Hydrogenation Catalysts, Journal of NonCrystalline Solids, 285, pp. 309-316 https://doi.org/10.1016/S0022-3093(01)00472-0
  11. Park, P.W., Lim, K.C., and Lee, RI., 1991: A Study on the Regeneration of Ni Catalyst for Hydrogenation(I), J. Korean Ind. Chern., 2, pp. 38-46
  12. 김기석, 이태정, 1995: 소각 촉매의 재생에 관한 연구, 화학공학, 33, pp. 590-597
  13. 이동근, 임선기, 1990: 아세틸렌 제거를 위한 타이타니아 담지 팔라듐 촉매의 비활성화와 재생, 화학공학, 28, pp. 237-242
  14. Gulati, S.T., Heck, R.M., and Farrauto, RJ., 2002:'Catalytic Air Pollution Control Commercial Technology', 2nd edition, p40, John Wiley & Sons, Inc., New York
  15. 전종기, 2002: '불포화유기화합물의 수소화 반응용 니켈 촉매의 제조 및 재생', pp. 15-17, 한국과학재단