참고문헌
- IEEE Trans. on Syst. Man Cybern. v.SMC-1 no.1 Polynomial theory of complex systems A. G. Ivakhnenko
- Theoretical Systems Ecology: Advance and Case Studies Identification of the mathematical model of a complex system by the selforganization method A. G. Ivakhnenko;G. I. Krotov;N. A. Ivakhnenko;E. Halfon(ed.)
- Sov. Automat. Contr. v.7 Longterm prediction by GMDH algorithms using the unbiased criterion and the balance-of-variables criterion A. G. Ivakhnenko;N. A. Ivakhnenko
- Sov. Automat. Contr. v.8 Longterm prediction by GMDH algorithms using the unbiased criterion and the balance-of-variables criterion, part2 A. G. Ivakhnenko;N. A. Ivakhnenko
- Self-Organizing Methods in Modeling, GMDH Type-Algorithms S. J. Farlow
- Master's thesis, Dept. Control Instrum., Wonkwang Univ. Evolutionary Design of Self-organizing Polynomial Neural Networks D. W. Kim
- Trans. KIEE v.49D no.3 A study on the optimal design of polynomial neural networks structure S. K. Oh;D. W. Kim;B. J. Park
- Inf. Sci. v.141 The design of self-organizing polynomial neural networks S. K. Oh;W. Pedrycz https://doi.org/10.1016/S0020-0255(02)00175-5
- IEEE Trans. on Fuzzy Syst. v.1 no.1 A fuzzy-logic-based approach to qualitative modeling M. Sugeno;T. Yasukawa https://doi.org/10.1109/TFUZZ.1993.390281
- Journal of KIEE v.11 no.2 A study on the self-organizing fuzzy polynomial neural networks D. W. Kim;S. K. Oh;H. K. Kim
- IEEE Trans. on Syst. Man. Cybern. v.23 no.3 ANFIS: Adaptive-networks-based fuzzy inference system J. S. Jang https://doi.org/10.1109/21.256541
- Neuro-Fuzzy AND Soft Computing: A Computational Approach to Learning and Machine Intelligence J. S. Jang;C. T. Sun;E. Mizutani
- Int. J. Approx. Reasoning v.5 no.3 NN-driven fuzzy reasoning H. Takagi;I, Hayashi https://doi.org/10.1016/0888-613X(91)90008-A
- Fuzzy Sets Syst. v.28 Structure identification of fuzzy model M. Sugeno;G. T. Kang https://doi.org/10.1016/0165-0114(88)90113-3
- Tran. Soc. Instrum. Control Eng. v.22 no.9 Revised GMDH algorithm estimating degree of the complete polynomial T. Kondo
- IEEE Trans. on Fuzzy Syst. v.9 no.4 A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks S. Wu;M. J. Er;Y. Gao https://doi.org/10.1109/91.940970
- IEEE Trans. on Neural Netw. v.3 no.5 On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm S. I. Horikawa https://doi.org/10.1109/72.159069
- IEEE Trans. on Fuzzy Syst. v.5 no.3 A new approach to fuzzy modeling E. T. Kim;M. K. Park;S. H. Ji;M. Park https://doi.org/10.1109/91.618271
- Inf. Sci. v.110 A simply identified Sugeno-type fuzzy model via double clustering E. Kim;H. Lee;M. Park;M. Park https://doi.org/10.1016/S0020-0255(97)10083-4
- Fuzzy Sets Syst. v.106 About the use of fuzzy clustering techniques for fuzzy model identification A. F. Gomez-Skarmeta;M. Delgado;M. A. Vila https://doi.org/10.1016/S0165-0114(97)00276-5
- IEE Proc.-Control Theory Appl. v.142 no.6 Linguistic fuzzy model identification H. S. Hwang;K. B. Woo https://doi.org/10.1049/ip-cta:19952254
- IEEE Trans. on Fuzzy Syst. v.3 no.2 A new approach to fuzzy-neural system modeling Y. Lin;G. A. Cunningham III https://doi.org/10.1109/91.388173
- Proc. of Fuzz-IEEE Combination of fuzzy rule based model and self-organizing approximator technique:a new approach to nonlinear system modeling D. W. Kim;J. H. Park;G. T. Park
- Proc. of IEEE Int. Conf. Syst. Man. Cybern Hybrid architecture of the neural networks and self-organizing approximator technique: a new approach to nonlinear system modeling D. W. Kim;G. T. Park
- IEEE Trans. on Fuzzy Syst. v.10 no.5 Fuzzy polynomial neural network: hybrid architectures of fuzzy modeling B. J. Park;W. Pedrycz;S. K. Oh https://doi.org/10.1109/TFUZZ.2002.803495