AutoEncoder와 FCM을 이용한 불완전한 데이터의 군집화

Clustering of Incomplete Data Using Autoencoder and fuzzy c-Means Algorithm

  • 발행 : 2004.05.01

초록

Autoencoder와 Fuzzy c-Means 알고리즘을 이용하여, 불완전한 데이터의 군집화를 위한 알고리즘이 본 논문에서 제안되었다. 본 논문에서 제안된 Optimal Completion Autoencoder Fuzzy c-Means (OCAEFCM)은 손상되어 불완전한 데이터의 최적 복원과 데이터의 군집화를 위해 Autoencoder Neural Network (AENN) 과 Gradient-based FCM (GBFCM)을 이용하였다. OCAEFCM 의 성능평가를 위해 IRIS 데이터와 금융기관에서 취득한 실제 데이터를 사용하였다 기존의 Optimal Completion Strategy FCM (OCSFCM)과 비교했을 때, 제안된 OCAEFCM 이 OCSFCM 보다 18%-20%의 성능 향상을 보여준다.

Clustering of incomplete data using the Autoencoder and the Fuzzy c-Means(PCM) is proposed in this paper. The Proposed algorithm, called Optimal Completion Autoencoder Fuzzy c-Means(OCAEFCM), utilizes the Autoencoder Neural Network (AENN) and the Gradiant-based FCM (GBFCM) for optimal completion of missing data and clustering of the reconstructed data. The proposed OCAEFCM is applied to the IRIS data and a data set from a financial institution to evaluate the performance. When compared with the existing Optimal Completion Strategy FCM (OCSFCM), the OCAEFCM shows 18%-20% improvement of performance over OCSFCM.

키워드

참고문헌

  1. IEEE Trans. Syst., Man, Cybern. v.SMC-9 Pattern Recognition with partly Missing Data J.Dixon
  2. Algorithms for Clustering Data A.Jain;R.Dubes
  3. Decision-making Processes in Pattern Recognition G.Sebestyen
  4. IEEE Tr. Syst., Man, Cybern. v.31 Fuzzy c-Means Clustering of Incomplete Data R.Hathaway;J.Bezdek https://doi.org/10.1109/3477.956035
  5. IEEE TR. Pattern Anal. Mach. Int. v.2 A convergence theroem for the fuzzy ISODATA clustering algorithms J.Bezdek https://doi.org/10.1109/TPAMI.1980.4766964
  6. Pattern recognition with Fuzzy Objective Function Algorithms J.Bezdek
  7. Proc. of IEEE ICNN-94 v.3 Gradient Based Fuzzy c_means (GBFCM) Dong C.Park;Issam Dagher
  8. Introduction to Statistical Pattern Recognition(2nd ed.) K.Fukunage
  9. Proc. of IEEE IJCNN-2002 Implicit Learning in Autoencoder Novelty Assessment B.Thompson(et al.)
  10. IEEE Tr. Fuzzy Syst. v.7 Will the real IRIS data please stand up? J.Bezdek(et al.) https://doi.org/10.1109/91.771092
  11. Neural Smithing : Supervised Learning in Feedforward Artificial Neural Network R.Reed;R.MarksⅡ
  12. Proc. of IEEE Int. Conf on Systems Eng. Approxi-mate structured singular value compu- tation via Frobenius norms M.Manning;S.Banda