2회전 CORDIC을 이용한 QRD-RLS 알고리듬 구현

QRD-RLS Algorithm Implementation Using Double Rotation CORDIC

  • 최민호 (전북대학교 대학원 전자공학과) ;
  • 송상섭 (전북대학교 대학원 전자공학과)
  • 발행 : 2004.05.01

초록

본 논문에서는 변경된 Given회전을 이용한 QR 분해와 이를 기반으로 하는 RLS 알고리듬의 구현에 대하여 연구하였다. Givens 회전은 CORDIC(Coordinate Rotation Digital Computer) 연산을 반복 수행하여 구한다. QR 분해의 계산 시간을 줄이기 위해 1회의 Givens 회전에 필요한 CORDIC 연산의 반복 회수를 제한하였으며 보정계수를 계산할 때의 제곱근 계산을 없애기 위해 2회전 방법을 사용하였다.

In this paper we studied an implementation of QR decomposition-based RLS algorithm using modified Givens rotation method. Givens rotation can be obtained with a sequence of the CORDIC operations. In order to reduce the computing time of QR decomposition we restricted the number of iterations of the CORDIC operation per a Givens rotation and used double-rotation method to remove the square-root in the scaling factor.

키워드

참고문헌

  1. Matrix Computations(3rd Ed.) G.H.Golub;C.F.Van Loan
  2. Adaptive Filter Theory(3rd Ed.) S.Haykin
  3. Statistical and Adaptive Signal Processing Manolakis;Ingle;Kogon
  4. IRE Trans. Electronic Computers v.EC-8 no.3 The CORDIC Trigonometric Computing Technique J.E.Volder https://doi.org/10.1109/TEC.1959.5222693
  5. Journal of VLSI Signal Processing v.25 The Birth of CORDIC J.E.Volder https://doi.org/10.1023/A:1008110704586
  6. IEEE Trans. Computers v.C-42 no.9 An Efficient Jacobi-like Algorithm for Parallel Eigenvalue Computation J.E.Volder
  7. SVD and Signal Processing Ⅱ -- Algorithms, Analysis and Applications A CORDIC Processor Array for the SVD of a Complex Matrix J.R.Cavallaro;A.C.Elster
  8. Signals, Systems and Computers, 2001. Conference Record of the Thirty-Fifth Asilomar Conference on v.1 no.4-7 On the design of an online complex Givens rotation R.McIlhenny;M.D.Ercegovac
  9. Linear Estimation Thomas Kailath;Ali Sayed;Babak Hassibi
  10. IEEE Trans. Signal Processing v.40 no.4 Systolic block Householder transformation for RLS algorithm with two-level pipelined implementation K.R.Liu;S.F.Hsieh;K.Yao https://doi.org/10.1109/78.127965
  11. TR_91-88, Electrical Engineering Department and Systems Research Center University of Maryland College Park A Fully parallel pipelined Systolic Array for MVDR Beamforming C.F.T.Tang;K.J.R.Liu
  12. IEEE Trans. Computers v.42 no.Issue1 An angle recording method for CORDIC algorithm implementation Y.H.Hu;S.Naganathan https://doi.org/10.1109/12.192217
  13. Real-Time Signal Processing IV, Proc. SPIE v.298 Matrix Triangularization by Systolic Arrays W.M.Gentleman;H.T.Kung
  14. Real Time Signal Processing VI, Proc. SPIE v.431 Recursive Least-Squares Minimization Using a Systolic Array J.G.McWhirter
  15. IEEE Transactions on Computers v.41 no.8 A Constant-Factor Redundant CORDIC for Angle Calculation and Rotation Jeong A Lee;Tomas Lang https://doi.org/10.1109/12.156544
  16. The Algebraic Eigenvalue Problem J.W.Wilkinson
  17. Numerical Linear Algebra, Society for Industrial and Applied Mathematics Lloyd N.Trefethen;David Bau
  18. IEEE Transactions on Computers v.41 no.8 CORDIC-based VLSI architectures for digital signal processing Y.H.Hu https://doi.org/10.1109/12.156544