Microfluidic Device for Bio Analytical Systems

  • Junhong Min (BioMEMS TG/Digital Bio Lab., Samsung Advanced Institute of Technology) ;
  • Kim, Joon-Ho (BioMEMS TG/Digital Bio Lab., Samsung Advanced Institute of Technology) ;
  • Kim, Sanghyo (BioMEMS TG/Digital Bio Lab., Samsung Advanced Institute of Technology)
  • 발행 : 2004.03.01

초록

Micro-fluidics is one of the major technologies used in developing micro-total analytical systems (${\mu}$-TAS), also known as “lab-on-a-chip”. With this technology, the analytical capabilities of room-size laboratories can be put on one small chip. In this paper, we will briefly introduce materials that can be used in micro-fluidic systems and a few modules (mixer, chamber, and sample prep. modules) for lab-on-a-chip to analyze biological samples. This is because a variety of fields have to be combined with micro-fluidic technologies in order to realize lab-on-a-chip.

키워드

참고문헌

  1. Sens. Actuators B v.1 Miniaturized total chemical analysis system: A novel concept for chemical sensing Manz,A.;N.Graber;H.M.Widmer https://doi.org/10.1016/0925-4005(90)80209-I
  2. Nucl. Acids Res. v.28 Survery and summary: From DNA biosensors to gene chips Wang,J. https://doi.org/10.1093/nar/28.16.3011
  3. Proceeding of MEMS2002 A disposable passive microfluidic system integrated with micromixer and DNA purification chip for DNA sample preparation Kim,J.H.;B.G.Kim;M.La;J.B.Yoon;E.Yoon
  4. Proc. IEEE v.86 Microfabricated devices for genetic diagnostics Mastrangelo,C.H.;M.A.Burns;D.T.Burke https://doi.org/10.1109/5.704282
  5. Anal. Chem. v.74 Micro total analysis systems: 1. Introduction, theory, and technology Reyes,D.R.;D.Iossifidis;P.A.Auroux;A.Manz https://doi.org/10.1021/ac0202435
  6. Micromachined Transducers Sourcebook Kovacs,G.T.A.
  7. Proceedings of the Transducer '99: Tenth International Conference on Solid-state Sensors and Actuators An electrochemically actuated micropump for use in a push-pull microdialysis based in-vivo monitoring system Bohm,S.;W.Olthius;P.Bergveld
  8. J. Micromech. Microeng. v.8 Deep wet etching of borosilicate glass using an anodically bonded silicon substrate as mask Corman,T.;P.Enoksson;G.Stemme https://doi.org/10.1088/0960-1317/8/2/010
  9. Sens. Actuators A v.79 Studies on SiO₂-SiO₂bonding with hydrophofluoric acid. Room temperature and low stress bonding technique for MEMS Nakanishi,H.;T.Nishimoto;R.Nakamura;A.Yotsumoto;T.Yoshida;S.Shoji https://doi.org/10.1016/S0924-4247(99)00246-0
  10. Sens. Actuators A v.61 Gas damping of electrostatically excited resonators T.Corman;P.Enoksson;G.Stemme https://doi.org/10.1016/S0924-4247(97)80270-1
  11. Microelectronics J. v.28 Glasses for microsystems technology Hulsenberg,D. https://doi.org/10.1016/S0026-2692(96)00071-7
  12. Sens. Actuators B v.86 Chemical analysis in photostructurable glass chips Becker,H.;M.Arundell;A.Harnisch;D.Hulsenberg https://doi.org/10.1016/S0925-4005(02)00162-4
  13. US Patent 4,882,245 Photoresist composition and printed circuit boards and packages made therewith Gelorme,J.D.;J.C.Robert;S.A.R.Gutierrez
  14. Sens. Actuators A v.64 High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS Lorenz,H.;M.Despont;N.Fahrni;J.Brugger;P.Vettiger;P.Renaud https://doi.org/10.1016/S0924-4247(98)80055-1
  15. Anal. Chim. Acta v.468 Rapid fabrication of electrochemical enzyme sensor chip using polydimethylsiloxane microfluidic channel Yamaguchi,A.;P.Jin;H.Tsuchiyama;T.Masuda;K.Sun;S.Matusuo;H.Misawa https://doi.org/10.1016/S0003-2670(02)00634-7
  16. J. MEMS v.9 Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer Jo,B.H.;L.M.van Lerberghe;K.M.Motsegood;D.J.Beebe https://doi.org/10.1109/84.825780
  17. Electrophoresis v.24 Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies Sia,S.K.;G.M.Whitesides https://doi.org/10.1002/elps.200305584
  18. Sci. Am. v.263 The unusual origin of the polymerase chain reaction Mullis,K. https://doi.org/10.1038/scientificamerican1190-56
  19. Trends Anal. Chem. v.19 Chip-based microsystems for genomic and proteomic analysis Sanders,G.H.W.;A.Manz https://doi.org/10.1016/S0165-9936(00)00011-X
  20. Sens. Actuators B v.63 Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system Lagally,E.T.;P.C.Simpson;R.A.Mathies https://doi.org/10.1016/S0925-4005(00)00350-6
  21. Sens. Actuators B v.84 A heater-integrated transport microchannel chip for continuous-flow PCR Sun,K.;A.Yamaguchi;Y.Ishida;S.Matsuo;H.Misawa https://doi.org/10.1016/S0925-4005(02)00016-3
  22. Lab Chip v.1 Fully integrated PCR-capillary electrophoresis microsystem for DNA analysis Lagally,E.T.;C.A.Emrich;R.A.Mathies https://doi.org/10.1039/b109031n
  23. Anal. Chem. v.73 Single-molecule DNA amplification and analysis in an integrated microfluidic device Lagally,E.T.;I.Medintz;R.A.Mathies https://doi.org/10.1021/ac001026b
  24. Appl. Environ. Microbiol. v.60 Improved method for recovery of mRNA from aquatic samples and its application to detection of mer expression Jeffrey,W.H.;S.Nazaret;R.V.Haven
  25. Appl. Environ. Microbiol. v.64 Detection of mRNA by reverse transcription-PCR as an indicator of viability in Escherichia coli cells Sheridan,G.E.C.;C.I.Maters;J.A.Shallcross;B.M.Mackey
  26. Antimicrob. Agents Chemother. v.38 Assessment of mycobacterial viability by RNA amplification Van der Vliet,G.M.E.;P.Schepers;R.A.F.Schukkink;B.van Gemen;P.R.Klaster https://doi.org/10.1128/AAC.38.9.1959
  27. Int. J. Food Microbiol. v.37 Evaluation of the NASBA? nucleic acid amplification system for assessment of the viability of Campylobacter jejuni Uyttendaele,M.;A.Bastiaansen;J.Debevere https://doi.org/10.1016/S0168-1605(97)00039-1
  28. Biochem. biophys. Acta v.26 The correlation of ribonuclease activity with specific aspects of tertiary structure M.Sela;C.B.Anfinsen;W.F.Harrington https://doi.org/10.1016/0006-3002(57)90096-3
  29. Appl. Environ. Microbiol. v.57 Detection of viable Legionella pneumophila in water by polymerase chain reaction and gene probe methods Bej,A.K.;M.H.Mahbulbani;R.M.Atlas
  30. Food Chem. Toxicol. v.33 Effects of contact sensitizers neomycin sulfate, benzocaine and 2,4-dinitrobenzene 1-sulfonate, sodium salt on viability, membrane integrity and IL-1α mRNA expression of cultured normal human keratinocytes Pastore,S.;G.M.Shivji;S.Kondo;T.Kono;R.C.McKenzie;L.Segal;D.Somers;D.N.Sauder https://doi.org/10.1016/0278-6915(95)80249-5
  31. Anal. Chim. Acta v.494 Continuous-flow DNA and RNA amplification chip combined with laser-induced fluorescence detection Obeid,P.J.;T.K.Christopoulos https://doi.org/10.1016/S0003-2670(03)00898-5
  32. Bio/technology v.8 Transgenics primed for research Van Brunt,J. https://doi.org/10.1038/nbt0890-725
  33. Anal. Chem. v.74 Rapid microfluidic mixing Johnson,T.J.;D.Ross;L.E.Locascio https://doi.org/10.1021/ac010895d
  34. Mec. Ind. v.2 Passive mixing in microchannels: Fabrication and flow experiments Beebe,D.J.;R.J.Adrian;M.G.Olsen;M.A.Stremler;H.Aref;B.H.Jo
  35. Sens. Actuators A v.97;98 Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump Tsai,J.H.;L.Lin
  36. Proceedings of IEEE MEMS'93 Micromixer with fast diffusion Miyake,R.;T.S.J.Lammerink;M.Elwenspoek;J.H.J.Fluitman
  37. Proceedings of Transducers '99 Design of rapid micromixers using CFD Larsen,U.D.;W.Rong;P.Telleman
  38. Sens. Actuators A v.93 Ultrasonic micromixer for microfluidic systems Yang,Z.;S.Matsumoto;H.Goto;M.Matsumoto;R.Maeda https://doi.org/10.1016/S0924-4247(01)00654-9
  39. Sens. Actuators A v.50 Working principle and performance of the dynamic micropump Gerlach,T.;H.Wurmus https://doi.org/10.1016/0924-4247(96)80097-5
  40. Int. J. Heat. Mass Tran. v.35 Heat transfer enhancement in coiled tubes by chaotic mixing Acharya,N.;M.Sen;H.C.Chang https://doi.org/10.1016/0017-9310(92)90090-F
  41. Int. J. Heat. Mass Tran. v.40 The effects of chaotic advection on heat transfer Mokrani,A.;C.Castelain;H.Peerhossaini https://doi.org/10.1016/S0017-9310(96)00361-4
  42. J. MEMS v.9 Passive mixing in a three-dimensional serpentine micro-channel Liu,R.H.;M.A.Stremler;K.V.Sharp;M.G.Olsen;J.G.Santiago;R.J.Adrian;H.Aref;D.J.Beebe https://doi.org/10.1109/84.846699
  43. Phys. Acoustics v.2B Acoustic streaming Nyborg,W.L.M.
  44. Sens. Actuators A v.66 Microfluidic motion generation with acoustic waves Zhu,X.;E.S.Kim https://doi.org/10.1016/S0924-4247(97)01712-3
  45. Microsystem Technology in Chemistry and Life Science Manz,A.;H.Becker
  46. J. Chromatogr. A. v.914 On-line nanoliter cycle sequencing reaction with capillary zone electrophoresis purification for DNA sequencing Xue,G.;H.M.Pang;E.S.Yeung https://doi.org/10.1016/S0021-9673(00)01167-5
  47. Curr. Opin. Biotechnol. v.14 Microfluidic devices for DNA sequencing; sample preparation and electrophoretic analysis Paegel,B.M.;R.G.Blazej;R.A.Mathies https://doi.org/10.1016/S0958-1669(02)00004-6
  48. Electrophoresis v.23 Contact conductiveity detection of polymerase chain reaction products analyzed by reverse-phase ion pair microcapillary electrochromatography Galloway,M.;S.A.Soper https://doi.org/10.1002/1522-2683(200211)23:21<3760::AID-ELPS3760>3.0.CO;2-V
  49. Exp. Thermal Fluid Sci. v.26 Fundamental issues related to flow boiling in minichannels and microchannels Kandlikar,S.G. https://doi.org/10.1016/S0894-1777(02)00150-4
  50. Int. J. Heat Mass Trans. v.45 Analysis of microchannel heat sinks for electronics cooling Zhao,C.Y.;T.J.Lu https://doi.org/10.1016/S0017-9310(02)00180-1
  51. Proceedings of IEEE Solid-State Sensor and Actuator Workshop Fluid circuit technology: Integrated interconnect technology for microfluidic devices Verlee,D.;A.Alcock;G.Clark;T.M.Huang;S.Kantor;T.Nemcek;J.Norlie;J.Pan;F.Walsworth;S.T.Wong
  52. Proceedings of the μTAS '94 Workshop Development of a micro flow-system with integrated biosensor array Schomburg,W.K.;B.Bustgens;J.Fahrenberg;D.Maas