통계적 유한요소모델을 이용한 발포된 금속기지 복합재료의 인장특성

Tensile Behaviour of Foamed Metal Matrix Composite Using Stochastic FE Model

  • 전성식 (공주대학교 공과대학 기계자동차공학부)
  • 발행 : 2004.04.01

초록

본 연구에서는 폐쇄형 발포금속의 인장 특성을 이해하기 위하여 수정된 단위모델을 제시하였다. 또한 발포금속의 밀도는 가우스 분포에 의거하여 확률적으로 분포한다고 가정하고 본 연구에서 제시된 수정 단위 모델을 조합하여 유한요소 모델을 제안하였다. 이 모델은 실제 인장 시험과 유사한 변형거동을 보이는 것을 확인하였고, 적절한 밀도 분포와 내부 기공을 고려하게 되면, 해석에서 구해진 최대 인장 강도가 근사적으로 실험결과와 일치하는 것을 볼 수 있었다. 또한, 발포 알루미늄의 최대 인장 강도는 밀도 분포의 표준편차보다는 내부 기공 부피분율에 더 민감하게 변하는 것으로 밝혀졌다.

In this paper, a modified and representative unit cell model was employed to study the tensile behaviour of closed-cell metallic foams with varying spatial density distribution as well as material imperfections. The density variation was assumed to follow a statistical probability distribution of the Gaussian type. A multiple cell finite element model, utilising the modified unit cell, was developed. The model exhibits deformation patterns similar to those observed in tensile testing. The nominal stress-strain curve obtained from quasistatic tensile of the foam was compared with experimental findings and was found to be in good agreement in the scheme of maximum strength only if the appropriate density distribution and volume fraction of internal imperfections are taken into account. Moreover, maximum tensile strength of the aluminium foam was found to be more sensitive to the volume fraction of imperfection than standard deviation of the density.

키워드

참고문헌

  1. Polymer Composites v.23 no.3 Robust Design of a Composite Air Spindle Chang,S.H.;Lee,D.G. https://doi.org/10.1002/pc.10438
  2. Finite Elements in Analysis and Design v.38 FE Modeling of Deformation Localization in Metallic Foams Meguid,S.A.;Cheon,S.S.;Abbasi;N-El https://doi.org/10.1016/S0168-874X(01)00096-8
  3. International Jouranl of Impact Engineering v.18 Static Crushing of Square Aluminium Extrusions with Aluminium Foam Filler Hanssen,A.G.;Langseth,M.;Hopperstad,O.S. https://doi.org/10.1016/S0734-743X(96)00025-5
  4. International Jouranl of Impact Engineering v.24 Static and Dynamic Crushing of Square Aluminium Extrusions with Aluminium Foam Filler Hanssen,A.G.;Langseth,M.;Hopperstad,O.S. https://doi.org/10.1016/S0734-743X(99)00169-4
  5. Materials & Design v.18 Aluminium Foams for Transport Industry Baumeister,J.;Banhart,J.;Weber,M. https://doi.org/10.1016/S0261-3069(97)00050-2
  6. Computers & Structures v.62 Material Model of Metallic Cellular Solids Hu,Ko,B.;Faria,L. https://doi.org/10.1016/S0045-7949(96)00310-0
  7. Acta Materialia v.45 On the Mechanical Performance of Closed Cell Al Alloy Foams Sugimura,Y.;Meyer,J.;He,M.Y.;Bart-smith H.;Grenestedt,J.L.;Evans,A.G. https://doi.org/10.1016/S1359-6454(97)00148-1
  8. Journal of the Mechanics and Physics of Solids v.45 Influence of Wavy Imperfections in Cell Walls on Elastic Stiffness of Cellular Solids Grenestedt,J.L.
  9. International Journal of Mechanical Science v.40 Uniaxial Strength Asymmetry in Cellular Materials: An Analytical Model Ford,C.M.;Gibson,L.J. https://doi.org/10.1016/S0020-7403(97)00064-7
  10. Mechanics of Materials v.29 Effects of Morphology and Orientation on the Behavior of Two-dimensional Hexagonal Foams and Application in a Re-entrant Foam Anchor Model Overaker,D.W.;Cuitino,A.M.;Langrana,N.A. https://doi.org/10.1016/S0167-6636(98)00004-0
  11. Computers and Structures v.68 Crash Behavior of Columns Filled With Aluminum Honeycomb of Foam Santosa,S.;Wierzbicki,T. https://doi.org/10.1016/S0045-7949(98)00067-4
  12. Journal of the Mechanics and Physics of Solids v.46 On the Modeling of Crush Behavior of a Closed-cell Aluminium Foam Structures Santosa,S.;Wierzbicki,T. https://doi.org/10.1016/S0022-5096(97)00082-3
  13. Wear v.99 The Contact Mechanics of Cellular Solids Fortes,M.A.;Colaco,R.;Vaz,M.F.
  14. Cellular Solids Gibson,L.J.;Ashby,M.F.
  15. Scripta Materialia v.40 Tensile Strength of a Closed-cell A1 Foam in the Presence of Notches and Holes Paul,A.;Seshacharyulu,T.;Ramanurty,U. https://doi.org/10.1016/S1359-6462(99)00037-8
  16. Acta Materialia v.47 Fatigue Failure of an Open Cell and a Closed Cell Aluminium Alloy Foam Harte,A.M.;Fleck,N.A.;Ashby,M.F. https://doi.org/10.1016/S1359-6454(99)00097-X
  17. International Jouranl of Mechanical Science v.42 A Continuum Plasticity Model for the Constituive and Indentation Behaviour of Foamed Metals Miller,R.E. https://doi.org/10.1016/S0020-7403(99)00021-1
  18. International Journal of Impact Engineering v.24 High Strain Rate Compressive Behaviour of Aluminium Alloy Foams Deshpande,V.S.;Fleck,N.A. https://doi.org/10.1016/S0734-743X(99)00153-0
  19. Journal of the Mechanics and Physics of Silods v.48 Experimental Analysis of Deformation Mechanisms in a Closed-cell Aluminium Alloy Foam Bastawros,A.F.;Bart-smith,H.;Evans,A.G. https://doi.org/10.1016/S0022-5096(99)00035-6
  20. Proceedings of the Trird International Conference on Mechanics and Materials in Design On the Use of " SDDIS" for Measuring Deformation Localization in Cellular Materials Meguid,S.A.;Xue,H.
  21. International Journal of Solids and Structures v.37 Stochastic Aspects of Localized Failure: Material and Boundary Imperfections Gutierrez,M.A.;Borst,R.D. https://doi.org/10.1016/S0020-7683(00)00193-1
  22. International Jouranl of Automotive Technology v.5 On the Study of Crush Behaviour of Metallic Foams for Passenger Car Design Cheon,S.S.;Meguid,S.A.
  23. LS-DYNA Theory manual