DOI QR코드

DOI QR Code

Analysis of Resistance Performance of Modern Commercial Ship Hull Form using a Level-Set Method

Level-Set법을 이용한 일반상선의 저항성능 해석

  • Park, Il-Ryong (Korea Resesarch Institute of Ships and Ocean Engineering(KRISO), KORDI) ;
  • Kim, Jin (Korea Resesarch Institute of Ships and Ocean Engineering(KRISO), KORDI) ;
  • Van, Suak-Ho (Korea Resesarch Institute of Ships and Ocean Engineering(KRISO), KORDI)
  • 박일룡 (한국해양연구원 해양시스템안전연구소) ;
  • 김진 (한국해양연구원 해양시스템안전연구소) ;
  • 반석호 (한국해양연구원 해양시스템안전연구소)
  • Published : 2004.04.01

Abstract

The viscous free surface flow around KRISO container ship (KCS) is computed using the finite volume based multi block RANS code, WAVIS developed at KRISO. The free surface is captured with the Level-Set method and the realizable k-$\varepsilon$ model is employed for turbulence closure. The computations are carried out at model scale. For accurate free surface solution and its stable convergence the computations are performed with a suitable grid refinement around the free surface by applying an implicit discretization method based on a finite volume method to the Level-Set formulation. In all computational cases the numerical results agree well with experimental measurements.

Keywords

References

  1. 강국진, 1996, “Zero-level-set 방법을 사용한 자유표면파 계산,” 대한조선학회 추계학술대회 논문집, pp. 237-240.
  2. 김도현, 김우전, 반석호, 2000, “패널법을 이용한 일반 상선의 비선형 조파문제 해석,” 대한조선학회논문집, 제37권, 제4호, pp. 1-11.
  3. 김도현, 2000, 비선형 조파문제 해석을 위한 수치 기법 연구, 박사학위논문, 서울대학교 조선해양공학과.
  4. 김우전, 김도현, 반석호, 2000, “유한체적법을 이용한 상선주위의 난류유동 계산에 관한 연구,” 대한조선학회논문집, 제37권, 제4호, pp. 19-31.
  5. 박일룡, 2000, Applications of a Level-Set Method to Incompressible Viscous Flow with the Free Surface, 박사학위논문, 부산대학교 조선해양공학과.
  6. 박일룡, 전호환, 1999(a), “유한체적법에 의한 자유수면 유동해석에서 Level-Set기법에 대한 연구,” 대한조선학회논문집, 제36권 제2호, pp. 40-49.
  7. 박일룡, 전호환, 1999(b), “접수와 이수문제에서 강체주위 유동해석,” 대한조선학회논문집, 제36권, 4호, pp. 37-47.
  8. 반석호, 김우전, 김도현, 윤현세, 1998, 선박의 저항 성능 향상 기술, 산업자원부 공업기반 과제 보고서, 한국해양연구원.
  9. Alessandrini, B. and Delhommeau, G., 1994, “Simulation of Three-Dimensional Unsteady Viscous Free Surface Flow around a Ship Model,” Int. J. Numer. Methods in Fluids, Vol.19, pp. 321-342. https://doi.org/10.1002/fld.1650190404
  10. Beddhu, M., Jiang, M.Y., Taylor, L.K. and Whitfield, D.L., 1998, “Computation of Steady and Unsteady Flows with a Free Surface Around the Wigley Hull,” Applied Mathematics and Computation, Vol. 89, pp. 67-84. https://doi.org/10.1016/S0096-3003(97)81648-7
  11. Bet, F., Hanel, D., and Sharma, S., 1998, “Numerical Simulation of Ship Flow by a Method of Artificial Compressibility,” Proceedings of the Twenty Second Symposium on Naval Hydrodynamics, pp.173-182.
  12. Ferziger, J.H. and Peric, M., 1996, Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin.
  13. Harten, A., Engquist, B., Osher, S., and Chakravathy, S., 1987, “Uniformly High-Order Accurate Essentially Nonoscillatory Schemes, III,” Journal of Computational Physics, Vol. 71, pp. 231-303. https://doi.org/10.1016/0021-9991(87)90031-3
  14. Hino, T., 1994, “A Study of Grid Dependence in Navier-Stokes Solutions for Free Surface Flows around a Ship Hull,” Journal of the Society Naval Architects of Japan, v. 176, pp. 11-18.
  15. Hochbaum, A. C. and Vogt, M., 2000, “Flow and Resistance Prediction for a Container Ship,” Gothenburg 2000 A Workshop on Numerical Ship Hydrodynamcis, Gothenburg, Sweden.
  16. Kim, W.J., Kim, D.H., and Van, S.H., 2002, “Computational study on turbulent flows around modern tanker hull forms,” International Journal for Numerical Methods in Fluids, Vol. 38, No. 4, pp. 377-406. https://doi.org/10.1002/fld.230
  17. Muzaferija, S. and Peric, M., 1997, “Computation of Free Surface Flows Using Finite Volume Method and Moving Grids,” Numer. Heat Transfer, Part B, Vol. 32, pp. 369-384. https://doi.org/10.1080/10407799708915014
  18. Muzaferija, S. and Peric, M., 1999, “Computation of Free Surface Flows Using Interface-Tracking and Interface-Capturing Methods,” Chap. 2, in Mahrenholtz, O. and Markewicz, M., Nonlinear Water Wave Interaction, Computational Mechanics Publications.
  19. Raven, H.C., 1996, A Solution Method for the Nonlinear Ship Wave Resistance Problem, Ph.D. Thesis, Delft University of Technology, Netherlands.
  20. Shih, T.H., Liou, W.W., Shabir, A., and Zhu, J., 1995, "A New k - $varepsilon$ Eddy Viscosity Model for High Reynolds Number Turbulent Flows-Model Development and Validation," Computers and Fluids, Vol. 24, No. 3, pp. 227-238. https://doi.org/10.1016/0045-7930(94)00032-T
  21. Sussman, M., Fatemi, E., Smerera, P., and Osher, S., 1997, “An Improved Level-Set Method for Incompressible Two-Phase Flows,” Computers and Fluids, Vol. 27, No. 5-6, pp. 663-680. https://doi.org/10.1016/S0045-7930(97)00053-4
  22. Van Leer, B., 1979, “Towards the Ultimate Conservative Difference Scheme, V:A Second-Order Sequel to Godunov's Method,” Journal of Computational Physics, Vol. 32, pp. 101-136. https://doi.org/10.1016/0021-9991(79)90145-1

Cited by

  1. Unsteady RANS Analysis of the Hydrodynamic Response for a Ship with Forward Speed in Regular Wave vol.45, pp.1, 2008, https://doi.org/10.3744/SNAK.2008.45.1.29
  2. The Effects of Drag Reduction by Flow Control Grooves using CFD vol.38, pp.4, 2014, https://doi.org/10.5394/KINPR.2014.38.4.335
  3. A VOLUME OF FLUID METHOD FOR FREE SURFACE FLOWS AROUND SHIP HULLS vol.20, pp.1, 2015, https://doi.org/10.6112/kscfe.2015.20.1.057