Abstract
In this paper, We show that the bandpass random signals of the form ∑$_{\alpha}$$\alpha$$_{\alpha}$ a Sin(2$\pi$f$_{\alpha}$t + b$_{\alpha}$) where a$_{\alpha}$ being a random number in [0,1], f$_{\alpha}$ a random integer in a given frequency band, and b$_{\alpha}$ a random number in [0, 2$\pi$], generate Gaussian white noise signals and hence they are adequate for simulating Continuous Markov processes. We apply the result to the fluctuation-dissipation formula for the Johnson noise and show that the probability distribution for the long term average of the power of the Johnson noise is a X$^2$ distribution and that the relative error of the long term average is (equation omitted) where N is the number of blocks used in the average.error of the long term average is (equation omitted) where N is the number of blocks used in the average.