DOI QR코드

DOI QR Code

Effects of Combined Micronutrient(Fe, Mn, Cu, Zn, Mo and B) Application on Forage Traits in Pure and Mixed Swards of Orchardgrass and White Clover III. Changes in the contents and yields of N-compounds(crude/pure protein and soluble N-compounds) in forage plants

Orchardgrass 및 White Clover의 단파 및 혼파 재배에서 미량요소(Fe, Mn, Cu, Zn, Mo, B)의 조합시비가 목초의 특성에 미치는 영향 III. 목초 중 질소화합물(조/순단백질 및 수용성 질소화합물)의 함량 및 수량 변화

  • 정연규 (순천대학교 농업생명과학대학)
  • Published : 2004.03.01

Abstract

This pot experiment was conducted to investigate the effects of combined micronutrient application($T_1$;control, $T_2$; Fe, $T_3$; Fe+Mn, $T_4$; Fe+Mn+Cu, $T_5$ ; Fe+Mn+Cu+Zn, $T_6$ ; Fe+Mn+Cu+Zn+Mo, $T_7$ ; Fe+Mn+Cu+Zn+Mo+B) on forage performance of pure and mixed cultures of orchardgrass and white clover. The third part was concerned with the changes in the contents and yields of N-compounds (crude/pure protein and soluble N-compounds) in forages. The results obtained are summarized as follows: 1. The contents of N-compounds(crude/pure protein and soluble N-compounds) were generally different according to the forage species, whether it was a pure or mixed culture, and additional fertilization, especially N. In orchardgrass, these contents were relatively low at the $T_3$ and $T_6$ in both pure and mixed cultures. In white clover, these contents were relatively decreased by the $T_1$, $T_3$, and $T_6$ in mixed culture. 2. The treatments influenced relatively more on the yields of crude/pure protein than on the dry matter yields of forages, and this tendency was more significant in white clover than in orchardgrass. 3. In white clover, the great differences in the yields of crude protein by the treatments occurred especially in mixed culture and at 5th cut without no additional fertilization. In white clover, the positive effects of optimum treatments on the yields of crude protein seemed to be decreased by the additional fertilization, especially N. In mixed culture, the favorable growth of white clover by the optimum treatments tended to be positively related to the favorable contents and yields of N-compounds. The changes in the yields of pure protein were similar to the tendency of crude protein

Orchardgrass 및 white clover의 단파 및 혼파 재배조건에서 미량요소 Fe, Mn, Cu, Zn, Mo및 B의 조합시비가 목초의 생육, 개화, 수량, 양분 함량 및 식생구성비율 등에 미치는 영향을 구명하였다. 다량요소 양분을 동일 량 시비한 조건에서 7 수준의 미량요소 조합시비는 $T_1$; 대조구, $T_2$; Fe, $T_3$; Fe+Mn, $T_4$; Fe+Mn+Cu, $T_5$ ; Fe+Mn+Cu+Zn, $T_6$ ; Fe+Mn+Cu+Zn+Mo 및 $T_{7}$ ; Fe+Mn+Cu+Zn+Mo+B로 하였다. 본 III보에서는 조합시비가 목초의 N-화합물(조/순단백질 및 수용성 N-화합물)의 함량 및 이들의 수량(함량<%>/100 ${\times}$ 건물수량) 등에 미치는 영향을 검토하였다. 1. N-화합물의 함량은 일반적으로 초종(grass-clover), 재배방법(단파/혼파) 및 추비의 시비여부별 큰 차이를 보였다. Orchardgrass에서 처리별 N-화합물의 함량차이는 경미하였으나 $T_3$$T_6$ 에서는 단파 및 혼파재배 공히 다소 낮은 경향을 보였다. White clover에서는 처리별 차이가 단파재배에서는 뚜렷하지 않았으나 혼파재배에서는 $T_1$, $T_3$$T_6$ 에서 다소 낮은 부정적인 영향을 보였다. 2. 처리별 건물수량에 미치는 효과보다 조/순단백질의 수량에 미치는 효과가 상대적으로 더 컸으며 이는 orchardgrass의 경우보다 white clover에서 더 큰 영향을 보였다. 처리별 조단백질의 수량차이를 보면 orchardgrass는 건물수량의 변화특성과 상대적으로 비슷한 경향을 보였으나 조단백질의 수량에 미치는 $T_3$$T_6$의 부정적인 효과는 건물수량의 경우보다 더 크게 나타났다. 3. White clover에서 처리별 조단백질의 수량차이는 특히 혼파재배와 무추비 5차 예취 시에 뚜렷한 차이를 보였다. 추비(특히 N)가 조단백질의 수량에 미치는 조합시비의 효과를 경감시켰다. 또한 혼파재배에서 적합한 조합시비에 따른 white clover의 양호한 생육은 N-화합물의 양호한 함량 및 수량과 밀접한 연관성을 갖는 것으로 보였다. 두 초종 공히 처리별 순단백질의 수량변화 특성은 상술한 조단백질의 변화 특성과 비슷한 경향을 보였다.

Keywords

References

  1. Barbier, S. 1964. Einfluss der Stickstoffduengung auf Ertrag, Artensusarnmensetzung und Qualitaet einer Kleegrasmischung im Gefassversuch, Z. f. Pflanzenemaehr., Dueng., Bodenk. 107;32-40 https://doi.org/10.1002/jpln.19641070106
  2. Bergmann, W. and P. Neubert. 1976. Pflanzendiagnose und Pflanzenanalyse. VEB ustav Fischer Verlag, Jena
  3. Brown, J.C., R.S. Holmes and L.O. Tiffim. 1959. c. Soil Sci. Soc. Am. Proc. 23:231-234 https://doi.org/10.2136/sssaj1959.03615995002300030023x
  4. Cumbus l.P., D.J. Homsey and L.W. Robinson. 1977. The influence of P, Zn and Mn on absorption and translocation of Fe in watercress. Plant and Soil. 48:651-660 https://doi.org/10.1007/BF00145775
  5. Finck, A. 1969. Pflanzenemaehrung in Stickworten, 1. Aufl. Verlag Ferdinand Hirt, Kiel
  6. Fischbeck, G., K.U. Heyland and N. Knauer. 1975. Spezieller pflanzenbau. Verlag Eugen Ulmer, Stuttgart. 225
  7. Gupta U.C. and E.W. Chipman. 1976. Influence of iron and pH on the yield and iron, manganese, zinc, and nitrogen concentration of carrots grown on sphagnum peat soil. Plant and Soil. 44:559-566 https://doi.org/10.1007/BF00011375
  8. Hiatt, A.J. and J.L. Ragland. 1963. Manganese toxicity of burley tobacco. Agron. J. 55:47-49 https://doi.org/10.2134/agronj1963.00021962005500010017x
  9. Jung, G.A. and B.S. Baker. 1973. Forage grasses and legumes-orchardgrass. In; Heath and Barnes: Forages, 3rd edit. The Iowa State Univ. Press, USA. 285-296
  10. Kannan, S. and S. Ramani. 1978. Studies on Molybdenum absorption and transport in bean and rice. Plant Physiol. 62: 179-181 https://doi.org/10.1104/pp.62.2.179
  11. Kirsch, R.K., M.E. Harward and R.G. Petersen. 1960. Interrelationship among iron, manganese, and molybdenum in the growth and nutrition of tomatoes grown in culture solution. Plant and Soil. 12:259-275 https://doi.org/10.1007/BF01343653
  12. Klapp, E. 1971. Wiesen und Weiden. Verlag Paul Parley, Belin und Hamburg. 155. 191
  13. MacKay, D.C., E.W. Chipman and W.M. Langille. 1964. Crop responses to some rnicronutrients and sodium on sphagnum peat soil. Soil Sci. Soc. Am. Proc. 28:101-104 https://doi.org/10.2136/sssaj1964.03615995002800010043x
  14. Massumi, A. and A. Finck. 1973. Molybdaengehalte einiger Acker- und Gruenlandpflanzen Schleswig-Holsteins in Abhaengigkeit von Boden-reaktion. Z. F. Pflanzenemaehr., Bodenkd. 134:56-65 https://doi.org/10.1002/jpln.19731340108
  15. Matin, A. 1966. Minderung der MolybdaenToxiditaet an Pflanzen durch andere Naehrstoffe. Dissertation, D 83, Nr. 200, Techn. Univ. Berlin
  16. Moore, D.P., M.E. Harward, D.D. Mason, R.J. Hader, W.L. Lott and W.A. Jackson. 1957. An investigation of some of the relationships between copper, iron, and molybdenum in the growth and accumulations of copper and iron. Soil Sci. Soc. Am. Proc. 21:65-74 https://doi.org/10.2136/sssaj1957.03615995002100010014x
  17. Moraghan, J.T. and T.J. Freeman. 1978. Influence of FeEDDHA on growth and manganese accumulation in flax. Soil Sci Soc. Am. Proc. 42:455-460 https://doi.org/10.2136/sssaj1978.03615995004200030016x
  18. Nieschlag, F. 1966. Versuche ueber den Einfluss einiger Spurenelemente auf die Leistung von Milchviehweiden. Landw. Forschung. 19:191-195
  19. Osullivan, M. 1969. Iron metabolism of grasses. I. Effect of iron supply on some inorganic and organic constituents. Plant and Soil. 31:451-462 https://doi.org/10.1007/BF01373816
  20. Riekels, J.W. and J.C. Lingle. 1966. Iron uptake and translocation by tomato plants as influenced by root temperature and manganese nutrition. Plant Physiol. 41:1095-1101 https://doi.org/10.1104/pp.41.7.1095
  21. Shingh, B.R. and K. Steenberg. 1975. Plant response to micronutrients. III. Interaction between manganese and zinc in maize and barley plants. Plant and Soil. 40:655-667 https://doi.org/10.1007/BF00010521
  22. Sommers, I.I. and J.W. Shive. 1942. The iron manganese relation in the plant metabolism. Plant Physiol. 17:582-602 https://doi.org/10.1104/pp.17.4.582