References
- S. Boyd, L. EIGhaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory (SIAM Studies in Applied Mathematics), 15, SIAM, PA, 1994
- P. Gahinet, A. Nemirovski, A. J. Laub, M. Chilali, LMI Control Toolbox, The MathWorks, Natick, MA, 1995
-
J. C. Geromel, J. M. Bemussou, M. C. deOliveira, '
$H_2$ norm otpimization with constrained dynamic outpup feedback controllers: decentralized and reliable control', IEEE Trans. Automat. Contr., vol.44, no.7, pp. 1449-1454, 1999 https://doi.org/10.1109/9.774121 -
S. W. Kim, B. K. Kim, C. J. Seo, 'Robust and reliable
$H_x$ state-feedback control: a linear matrix inequality approach', Trans. Contr. Automat. and Sys. Eng., vol.2, no.1, 2000 - C. Scherer, P. Gahinet, M. Chilali, 'Multiobjective output-feedback control via LMI optimization', IEEE Trans. Automt. Contr., vol.42, no.7, pp. 896-911, 1997 https://doi.org/10.1109/9.599969
-
C. J. Seo, B. K. Kim, 'Robust and reliable
$H_{infty}$ control for linear systems with parameter uncertainty and actuator failure', vol.32, no.3, pp. 465-467, 1996 https://doi.org/10.1016/0005-1098(95)00149-2 - R. J. Veillette, J. V. Medani, W. R. Perkins, 'Design of reliable control systems', IEEE Trans. Automat. Contr., vol. 37, no. 3, pp. 290-304, 1992 https://doi.org/10.1109/9.119629
- R. J. Veillete, 'Reliable linear-quadratic state-feedback control', Automatica, vol.31, no.1, pp. 137-143, 1995 https://doi.org/10.1016/0005-1098(94)E0045-J
-
G. -H. Yang, J. L. Wang, Y. C. Soh, 'Reliable
$H_{infinite}$ controller design for linear systems', Automatica, vol. 37, pp. 717-725 https://doi.org/10.1016/S0005-1098(01)00007-3