DOI QR코드

DOI QR Code

Servo control for shift-multiplexed holographic data storage by using a dome-type glass

돔 유리를 이용한 위치이동 다중화 홀로그램 정보저장장치용 서보 컨트롤

  • 김성필 (한양대학교 물리학과 마이크로 광학 국가지정연구실) ;
  • 송석호 (한양대학교 물리학과 마이크로 광학 국가지정연구실) ;
  • 오차환 (한양대학교 물리학과 마이크로 광학 국가지정연구실) ;
  • 김필수 (한양대학교 물리학과 마이크로 광학 국가지정연구실) ;
  • 김지덕 (삼성전자(주) 종합기술원) ;
  • 이홍석 (삼성전자(주) 종합기술원)
  • Published : 2004.02.01

Abstract

We propose a servo control method using a dome-type glass in shift-multiplexed holographic data storage. We frist store live 2-D data by shift-multiplexing in a holographic disk with 5% variation in their. diffraction efficiencies. During read-out of the stored data, the servo control using the dome glass correctly compensates mechanical errors of the disk; the error of $\pm$0.2$^{\circ}$and run-out error of $\pm$50 ${\mu}{\textrm}{m}$. Use of the dome-type glass in servo control makes a pickup module more compact in size and easier to control than the previous method using parallel glass plate [Sungphil Kim, et al., Hankook Kwanghak Hoeji, Vol. 14, No. 1, pp.58-64, 2003].

위치이동 다중화 홀로그램 정보저장장치에서, 돔 형태(dome-type)유리를 이용한 서보 컨트롤 방법을 제안하였다. 5개의 2차원 데이터를 재생효율 균일도 5% 이내로 위치이동 다중화 기록을 한 후, 직경이 25.4 mm 이고 두께가 1 mm 인 돔 유리를 사용하여, 재생 시에 발생하는 홀로그램 디스크의 기울어짐 각도오차가 $\pm$0.2$^{\circ}$,위치오차 $\pm$50$\mu\textrm{m}$인 경우에 대해서도 정확한 오차보정이 가능함을 실험적으로 검증하였다. 돔 유리를 이용하는 방식은 기존에 제안된 평판유리를 이용하는 방식[김성필 외, 한국광학회지, Vol. 14, No.1, pp. 58-64, 2003]에 비해 구동이 간편하기 때문에, 서보 컨트롤을 위한 광 픽업 장치를 간단하고 작은 규모로 모듈화 하는데 매우 유용하다.

Keywords

References

  1. Nature v.422 Holographic data storage: The light fantastic M.Haw https://doi.org/10.1038/422556a
  2. https://doi.org/10.1364/AO.35.002403
  3. Applied Optics v.35 no.14 Shift multiplexing with spherical reference waves G.Barbastathis;M.Levene;D.Psaltis https://doi.org/10.1364/AO.35.002403
  4. Optics Letters v.18 no.11 Angle-multiplexed storage of 5000 holograms in lithium niobate F.H.Mok https://doi.org/10.1364/OL.18.000915
  5. Journal of the Optical Society of America A v.12 no.9 Alignment sensitivity of holographic three-dimensional disks Hsin-Yu Sidney Li;Demetri Psaltis https://doi.org/10.1364/JOSAA.12.001902
  6. Applied Optics v.35 no.14 High-density recording in photopolymer-based holographic three-dimensional disks Allen Pu;Demetri Psaltis https://doi.org/10.1364/AO.35.002389
  7. Optics Letters v.25 no.10 Distortion in pixel-matched holographic data storage due to lateral dimensional change of photopolymer storage media R.M.Shelby;D.A.Waldman;R.T.Ingwall https://doi.org/10.1364/OL.25.000713
  8. Optics Letters v.27 no.7 Holographic data storage with arbitrarily misaligned data storage Geoffrey W. Burr https://doi.org/10.1364/OL.27.000542
  9. Applied Optics v.35 no.14 Compact holographic storage demonstrator with rapid access Ian McMichael;William Christian;David Pletcher;Tallis Y. Chang;John H. Hong https://doi.org/10.1364/AO.35.002375
  10. U. S. Patent 5982513 Method and system to align holographic images Gen Zhou
  11. 한국광학회지 v.14 no.1 디스크형 홀로그램 정보저장장치를 위한 광축상 서보 컨트롤 김성필;송석호;오차환;김필수;김지덕;이흥석 https://doi.org/10.1364/AO.40.003387
  12. Applied Optics v.40 no.20 Storage density of shift-multiplexed holographic memory Gregory J. Steckman;Allen Pu;Demetri Psaltis https://doi.org/10.1364/AO.40.003387
  13. Optics Eugene Hecht;Alfred Zajac
  14. Aprilis
  15. IEEE Journal of Quantum Electronics v.QE-5 no.10 Astigmatic Gaussian beams produced by axially asymmetric laser cavities David C. Hanna