Abstract
Instrumented indentation tests have been used for estimating material properties. In order to analyze deformation characteristics with various factors, the unloading stiffness should be properly determined from the elastic behavior. The unloading stiffness is generally obtained from the shifted power functions fitting with the experimental unloading data. However, the functions often give rise to a poor representation of actual data, and also the unloading stiffness is governed by unloading condition. In this study, both numerical and experimental conditions to obtain proper unloading stiffness were investigated. The result showed that the amount of unloading ratio and hold time played an important role in fitting the unloading curves. The current efforts can successfully provide the unloading stiffness for indentation material properties.