Synthesis and Characterization of Fructooligosaccharides Using Levansucrase with a High Concentration of Sucrose

  • Seo Eun-Seong (Laboratory of Functional Carbohydrate Enzyme and Microbial Genomics, Chonnam National University, Department of Material Chemical and Biochemical Engineering, Chonnam National University) ;
  • Lee Jin-Ha (Laboratory of Functional Carbohydrate Enzyme and Microbial Genomics, Chonnam National University, Engineering Research Institute, Chonnam National University) ;
  • Choi Jae-Young (Laboratory of Functional Carbohydrate Enzyme and Microbial Genomics, Chonnam National University, Department of Material Chemical and Biochemical Engineering, Chonnam National University) ;
  • Seo Mi-Young (Laboratory of Functional Carbohydrate Enzyme and Microbial Genomics, Chonnam National University) ;
  • Lee Hee-Sun (Laboratory of Functional Carbohydrate Enzyme and Microbial Genomics, Chonnam National University, Department of Physics, Chonnam National University) ;
  • Chang Seuk-Sang (Pohang Accelerator Laboratory) ;
  • Lee Hyung-Jong (Department of Molecular and Biotechnology, Chonnam National University, Biology Research Center for Industrial Accelerators, Dongshin University) ;
  • Choi Jeong-Sik (Biology Research Center for Industrial Accelerators, Dongshin University) ;
  • Kim Doman (Laboratory of Functional Carbohydrate Enzyme and Microbial Genomics, Chonnam National University, School of Biological Sciences and Technology and Research Institute for Catalysis, Chonnam National University, Biology Research Center for Industrial Accelerators, Dongshin University)
  • 발행 : 2004.10.01

초록

A method for synthesizing branched fructo-oligosaccharides (BFOS) with a high concentration of sucrose ($1{\~}3$ M) was developed using levansucrase prepared from Leuconortoc mesenteroides B-1355C. The degree of polymerization of oligosaccharides synthesized according to the present method ranged from 2 to over 15. The synthesized BFOS were stable at a pH ranges of 2 to 4 under $120^{\circ}C$. The percentage of BFOS in the reaction digest was $95.7\%$ (excluding monosaccharides; $4.3\%$ was levan). BFOS reduced the insoluble glucan formation by Streptococcus sobrinus on the surfaces of glass vials or stainless steel wires in the presence of sucrose. They also reduced the growth and acid productions of S, sobrinus. Oligosaccharides can be used as sweeteners for foods such as beverages requiring thermo- and acid-stable properties and 3s potential inhibitors of dental caries.

키워드

참고문헌

  1. Magali, R. S., R. M. Willemot, and P. Monsan (2000) Glucansucrase: Molecular engineering and oligosaccharide synthesis. J. Mol. Catalysis 16: 117-128 https://doi.org/10.1016/0304-5102(82)85001-3
  2. Marsh, P. D. (1999) Oral Microbiology. 4th ed., pp. 58-81. Wright, Woburn, USA
  3. Lindgren, S. E. and W. J. Dobrogosz (1990) Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS. Microbiol. Rev. 7: 149-163
  4. Chambert, R., M. C. Rain-Guion, and M. F. Petit-Glatron (1992) Readthrough of the Bacillus subtilis stop codon produces an extended enzyme displaying a higher polymerase activity. Biochim. Biophys. Acta 1132: 145-153 https://doi.org/10.1016/0167-4781(92)90005-K
  5. Song, D. D. and N. A. Jacques (1999) Purification and enzymic properties of the fructosyltransferase of Streptococcus salivarius ATCC 25975. J. Biochem. 341: 285-291 https://doi.org/10.1042/0264-6021:3410285
  6. Jang, E. K., K. H. Jang, I. Koh, I. H. Kim, S. H. Kim, S. A. Kang, C. H. Kim, S. D. Ha, and S. K. Rhee (2002) Molecular characterization of the levansucrase gene from Pseudomonas aurantiaca S-4380 and its expression in Escherichia coli. J. Microbiol. Biotechnol. 12: 603-609
  7. Geier, G. and K. Geider (1993) Characterization and influence on virulence of the levansucrase gene from the firelight pathogen Erwinia amylovora. Physiol. Mol. Plant Pathol. 42: 387-404 https://doi.org/10.1006/pmpp.1993.1029
  8. Park, H. E., N. H. Park, M. J. Kim, T. H. Lee, H. G. Lee, J. Y. Yang, and J. H. Cha (2003) Enzymatic synthesis of fructosyl oligosaccharides by levansucrase from Microbacterium laevaniformans ATCC 15953. Enzyme Microb. Technol. 32: 820-827 https://doi.org/10.1016/S0141-0229(03)00062-0
  9. Kim, C. Y., J. H. Lee, B. H. Kim, S. K. Yoo, E. S. Seo, K. S. Cho, D. F. Day, and D. Kim (2002) Production of mannitol using Leuconostoc mesenteroides NRRL B-1149. Biotechnol. Bioprocess Eng. 7: 234-236 https://doi.org/10.1007/BF02932977
  10. Kim, D., J. F. Robyt, S. Y. Lee, J. H. Lee, and Y. M. Kim (2003) Dextran molecular size. and degree of branching as a function of sucrose concentration, pH, and temperature of reation of Leuconostoc mesenteroides B-512FMCM dextransucrase. Carbohydr. Res. 338: 1183-1189 https://doi.org/10.1016/S0008-6215(03)00148-4
  11. Lee, J. H., S. Y Lee, G. O. Lee, E. S. Seo, S. S. Chang, and D. Kim (2003) Transglycosylation reaction and raw starch hydrolysis by a novel carbohydrate from Lipomyces starkeyi. Biotechnol. Bioprocess Eng. 8: 106-111 https://doi.org/10.1007/BF02940265
  12. Heo, S. J., D. Kim, I. S. Lee, and P. S. Chang (1999) Develoment of mixed-culture fermentation process and charaterization for new oligosacchariedes and dextran using Lipomyces starkeyi and Leuconostoc mesenteroides. Kor. J. Appl. Microbiol. Biotechnol. 27: 304-310
  13. Ryu, S. J., D. Kim, H. J. Ryu, and D. F. Day (2000) Purification and partial characterization of a novel glucanhydrolase from Lipomyces starkeyi KSM 22 and its use for inhibition of insoluble glucan formation. Biosci. Biotechnol. Biochem. 64: 223-228 https://doi.org/10.1271/bbb.64.223
  14. Tanzer, J. M., M. L. Freedman, and R. J. Fitzgerald (1985) Virulence of mutants defective in glucosyltransferase, dextran mediated aggregation, or dextranase activity. pp. 204-211. In: S. E. Mergenhagen and B. Rosan (eds.). Molecular Basis of Oral Microbial Adhesion. ASM, Washington, USA
  15. Hamada, S. and H. D. Slade (1980) Biology, immunology and cariogencity of Streptococcus mutans. Microbiol. Rev. 44: 331-384
  16. Robyt, J. F. and P. J. Martin (1983) Mechanism of synthesis of D-glucans by D-glucosyltransferase from Streptococcus mutans 6715. Carbohydr. Res. 113: 301-315 https://doi.org/10.1016/0008-6215(83)88245-7
  17. Robyt, J. F. (1995) Mechanism in the glucansucrase synthesis of polysaccharides and oligosaccharides from sucrose. Adv. Carbohydr. Chem. Biochem. 51: 133-168 https://doi.org/10.1016/S0065-2318(08)60193-6
  18. Vacca-smith, A. M., A. R. Venkitaraman, and R. G. Quivey (1996) Interaction of Streptococcal glucosyltransferase with $\alpha$-amylase and starch on the surface of salivacoated hydroxyapatite. Archs. Oral Biol. 41: 291-298 https://doi.org/10.1016/0003-9969(95)00129-8
  19. Tsuchiya, H. M., N. N. Hellman, H. J. Koepsell, J. Corman, S. S. Stringer, and R. W. Jackson. (1955) Factor affecting molecular weight of enzymatically synthesized dextran. J. Am. Chem. Soc. 77: 2412-2419 https://doi.org/10.1021/ja01614a016
  20. Fu, D. T. and J. F. Robyt (1991) Maltodextrin acceptor reactions of Streptococcus mutans 6715 glucosyltransferases. Carbohydr. Res. 217: 201-211 https://doi.org/10.1016/0008-6215(91)84130-7
  21. Imai, S., K. Takeuchi, K. Shibata, S. Yoshikawa, S. Kitahata, S. Okada, S. Araya, and T. Nisizawa (1984) Screening of sugars inhibitory against sucrose-dependent synthesis and adherence of insoluble glucan and acid production by Streptococcus mutans. J. Dent. Res. 63: 1292-1297