Abstract
A rubber bushing connects the components of the vehicle each other and reduce the vibration transmitted to the chassis frame. A rubber bushing has the nonlinear characteristics for both the amplitude and the frequency and represents the hysteretic responses under the periodic excitation. In this paper, one-axis durability test is performed to describe the mechanical behavior of typical vehicle elastomeric components. The results of the tests are used to develop m empirical bushing model with an artificial neural network. The back propagation algerian is used to obtain the weighting factor of the neural network. A numerical example is carried out to verify the developed bushing model and the vehicle simulation is performed to show the fidelity of proposed model.
고무부싱은 차량부품들을 서로 연결하고 차체로 전달되는 진동을 줄여주는 역할을 하는 중요한 요소로써 가진변위와 주파수에 대해서 모두 비선형 특성을 보이며, 특히 주기적인 가진에 대해 히스테리시스 현상을 나타낸다. 본 논문에서는 1축 내구시험기를 이용하여 차량 현가 장치에 사용되는 부싱을 축 방향과 반경 방향에 대해 사인가진과 랜덤가진을 주어 특성을 살펴보았고 이러한 특성을 반영할 수 있는 동역학적 모델을 인공신경망을 이용하여 개발하였다. 실험결과는 신경망의 입력자료로 활용되었고, 오차역전파 알고리즘을 이용하여 실험적 부싱모델을 개발하였다. 개발된 실험적 부싱모델을 차량 시뮬레이션에 적용하여 유용성을 살펴보았다.