DOI QR코드

DOI QR Code

Effects of Chlorpromazine·HCl on the Structural Parameters of Bovine Brain Membranes

  • Jang, Hye-Ock (Department of Dental Pharmacology and Biophysics, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Jeong, Dong-Keun (Department of Dental Pharmacology and Biophysics, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Ahn, Shin-Ho (Department of Dental Pharmacology and Biophysics, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Yoon, Chang-Dae (Department of Dental Pharmacology and Biophysics, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Jeong, Soo-Cheol (Department of Dental Pharmacology and Biophysics, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Jin, Seong-Deok (Department of Dental Pharmacology and Biophysics, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Yun, Il (Department of Dental Pharmacology and Biophysics, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University)
  • Published : 2004.09.30

Abstract

Fluorescence probes located in different membrane regions were used to evaluate the effects of chlorpromazine HCl on structural parameters (transbilayer lateral mobility, annular lipid fluidity, protein distribution, and lipid bilayer thickness) of synaptosomal plasma membrane vesicles (SPMVs) isolated from bovine cerebral cortex. The experimental procedure was based on the selective quenching of 1,3-di(1-pyrenyl)propane (Py-3-Py) by trinitrophenyl groups, radiationless energy transfer from the tryptophan of membrane proteins to Py-3-Py, and energy transfer from Py-3-Py monomers to 1-anilinonaphthalene-8-sulfonic acid (ANS). In this study, chlorpromazine HCl decreased the lateral mobility of Py-3-Py in a concentration dependent-manner, showed a greater ordering effect on the inner monolayer than on the outer monolayer, decreased annular lipid fluidity in a dose dependent-manner, and contracted the membrane lipid bilayer. Furthermore, the drug was found to have a clustering effect on membrane proteins.

Keywords

References

  1. Ahn, K. W., Choi, C. H., Kim, I. S., Chung, I. K., Cho, G. J., Jang, H. O. and Yun, I. (2000) Transbilayer effects of chlorpromazine . HCl on rotational mobility of synaptosomal plasma membrane vesicles isolated from bovine brain. J. Biochem. Mol. Biol. 33, 541-547.
  2. Almeida, L. M., Vaz, W. L. C., Stumpel, J. and Madeira, V. M. C. (1986) Effect of short-chain primary alcohols on fluidity and activity of sarcoplasmic reticulum membranes. Biochemistry 25, 4832-4839. https://doi.org/10.1021/bi00365a017
  3. Bickel, M. H., Graber, B. E. and Moor, M. (1983) Distribution of chlorpromazine and imipramine in adipose and other tissues of rats. Life Sci. 33, 2025-2031. https://doi.org/10.1016/0024-3205(83)90742-7
  4. Breton, J., Viret, J. and Leterrier, F. (1977) Calcium and chlorpromazine interactions in rat synaptic plasma membranes. A spin-label and fluorescence probe study. Arch. Biochem. Biophys. 179, 625-633. https://doi.org/10.1016/0003-9861(77)90151-5
  5. Butterworth, J. F. and Strichartz, G. R. (1990) Molecular mechanism of local anesthetics: a review. Anesthesiology 72, 711-734. https://doi.org/10.1097/00000542-199004000-00022
  6. Chabanel, A., Abbott, R. E., Chien, S. and Schachter, D. (1985) Effects of benzyl alcohol on erythrocyte shape, membrane hemileaflet fluidity and membrane viscoelasticity. Biochim. Biophys. Acta 816, 142-152. https://doi.org/10.1016/0005-2736(85)90402-X
  7. Cogan, U. and Schachter, D. (1981) Asymmetry of lipid dynamics in human erythrocyte membranes studied with impermeant fluorophores. Biochemistry 20, 6396-6403. https://doi.org/10.1021/bi00525a018
  8. Cohen, B. M. (1983) The clinical utility of plasma neuroleptic levels; in Guidelines for The Use of Psychotropic Drugs, Stancer, H. C. (ed), pp. 245-261, Spectrum Publications, New York, USA.
  9. Curry, S. H. (1983) Clinical significance of neuroleptic plasma levels; in Guidelines for The Use of Psychotropic Drugs, Stancer, H. C. (ed), pp. 239-245, Spectrum Publications, New York, USA.
  10. Dobretsov, G. E., Spirin, M. M., Chekrygin, O. V., Karamansky, I. M., Dmitriev, V. M. and Vladimirov, Y. A. (1982) A fluorescence study of apolipoprotein localization in relation to lipids in serum low density lipoproteins. Biochim. Biophys. Acta 710, 172-180. https://doi.org/10.1016/0005-2760(82)90147-3
  11. Eisinger, J. and Flores, J. (1982) The relative locations of intramembrane fluorescent probes and of the cytosol hemoglobin in erythrocytes, studied by transverse resonance energy transfer. Biophys. J. 37, 6-7. https://doi.org/10.1016/S0006-3495(82)84571-2
  12. Iseki, K., Sugawara, M., Saitoh, H., Miyazaki, K. and Arita, T. (1988) Effect of chlorpromazine on the permeability of $\beta$-lactam antibodies across rat intestinal brush border membrane vesicles. J. Pharm. Pharmacol. 40, 701-705. https://doi.org/10.1111/j.2042-7158.1988.tb06998.x
  13. Kang, J. S., Choi, C. M. and Yun, I. (1996) Effects of ethanol on lateral and rotational mobility of plasma membrane vesicles isolated from cultured mouse myeloma cell line Sp2/0-Ag14. Biochim. Biophys. Acta 1281, 157-163. https://doi.org/10.1016/0005-2736(95)00301-0
  14. Kang, J. S. and Yun, I. (1994) Effects of lindane on microviscosity of brain membranes. Asia Pacific J. Pharmacol. 9, 67-71.
  15. Keefe, E. B., Blankenship, N. M. and Scharschmidt, B. F. (1980) Alteration of rat liver plasma membrane fluidity and ATPase activity by chlorpromazine hydrochloride and its metabolites. Gastroenterology 79, 222-231.
  16. Kier, A. B., Sweet, W. D., Cowlen, M. S. and Schroeder, F. (1986) Regulation of transbilayer distribution of a fluorescent sterol in tumor cell plasma membranes. Biochim. Biophys. Acta 861, 287-301.
  17. Lang, F., Busch, G. L., Ritter, M., Volki, H., Waldegger, S., Gulbins, E. and Häussinger, D. (1998) Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78, 247-306.
  18. Lang, F., Ritter, M., Volki, H. and Häussinger, D. (1993) The biological significance of cell volume. Renal Physiol. Biochem. 16, 48-65.
  19. Lee, S. M. (1999) The asymmetric effect of local anesthetics on transbilayer lateral and rotational mobility of model membranes of total phospholipid fraction extracted from brain membranes. Ph. D. Thesis. Pusan National University.
  20. Lejoyeux, M., Daveloose, D., Maziere, J. C. and Viret, J. (1993) A spin label study of the membrane effect of various psychoactive drugs in human erythrocytes. Life Sci. 52, 7-11.
  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.
  22. Min, B. G. (1997) The asymmetric effect of local anesthetics on transbilayer lateral and rotational mobility of model membranes of total lipid fraction extracted from brain membranes. Ph. D. Thesis. Pusan National University.
  23. Noji, S., Takahashi, T. and Kon, H. (1982) A spin-label study of the correlation between stomatocyte formation and membrane fluidization of erythrocytes. Biochem. Pharmacol. 31, 3173-3180. https://doi.org/10.1016/0006-2952(82)90546-9
  24. Perlman, B. J. and Goldstein, D. B. (1984) Genetic influence on the central nervous system depressant and membranedisordering actions of ethanol and sodium valproate. Mol. Pharmacol. 26, 547-552.
  25. Salesse, R., Garnier, J. and Daveloose, D. (1982a) Modulation of adenylate cyclase activity by the physical state of pigeon erythrocyte membrane. 2. Fluidity-controlled coupling between the subunits of the adenylate cyclase system. Biochemistry 21, 1587-1590. https://doi.org/10.1021/bi00536a019
  26. Salesse, R., Garnier, J., Leterrier, F., Daveloose, D. and Viret, J. (1982b) Modulation of adenylate cyclase activity by the physical state of pigeon erythrocyte membrane. 1. Parallel drug-induced changes in the bilayer fluidity and adenylate cyclase activity. Biochemistry 21, 1581-1586. https://doi.org/10.1021/bi00536a018
  27. Schachter, D. (1984) Fluidity and function of hepatocyte plasma membranes. Hepatology 4, 140-151. https://doi.org/10.1002/hep.1840040124
  28. Schachter, D., Abott, R. E., Cogan, U. and Flamm, M. (1983) Lipid fluidity of the individual hemileaflets of human erythrocyte membranes. Ann. N. Y. Acad. Sci. 414, 19-28. https://doi.org/10.1111/j.1749-6632.1983.tb31671.x
  29. Schroeder, F., Jefferson, J. R., Kier, A. B., Knittel, J., Scallen, T. J., Wood, W. G. and Hapala, I. (1991a) Membrane cholesterol dynamics: cholesterol domains and kinetic pools. Proc. Soc. Exp. Bio. Med. 196, 235-252. https://doi.org/10.3181/00379727-196-43185
  30. Schroeder, F., Nemecz, G., Wood, W. G., Morrot, G., Ayraut-Jarrier, M. and Devaux, P. F. (1991b) Transmembrane distribution of sterol in the human erythrocyte. Biochim. Biophys. Acta 1066, 183-192. https://doi.org/10.1016/0005-2736(91)90185-B
  31. Seeman, P. (1992) Dopamine receptor sequences. Therapeutic levels of neuroleptics occupy D2 receptors, clozapine occupies D4. Neuropsychopharmacology 7, 261-284.
  32. Seeman, P., Guan, H. C. and Van Tol, H. H. (1993) Dopamine D4 receptors elevated in schizophrenia. Nature 365, 441-445. https://doi.org/10.1038/365441a0
  33. Seeman, P. and Van Tol, H. H. (1993) Dopamine receptor pharmacology. Curr. Opin. Neurol. Neurosurg. 6, 602-608.
  34. Seigneuret, M., Zachowski, A., Hermann, A. and Devaux, P. F. (1984) Asymmetric lipid fluidity in human erythrocyte membrane. Biochemistry 23, 4271-4275. https://doi.org/10.1021/bi00314a002
  35. Sheetz, M. P. and Singer, S. J. (1974) Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc. Natl. Acad. Sci. USA 71, 4457-4461. https://doi.org/10.1073/pnas.71.11.4457
  36. Shinitzky, M. (1984) Membrane fluidity in malignancy. Adversative and recuperative. Biochim. Biophys. Acta 738, 251-261.
  37. Spector, A. A. and Yorek, M. A. (1985) Membrane lipid composition and cellular function. J. Lipid Res. 26, 1015-1035.
  38. Stubbs, C. D. and Williams, B. W. (1992) Fluorescence in membranes; in Fluorescence Spectroscopy in Biochemistry, Lakowicz, J. R. (ed), pp. 231-263, Plenum, New York, USA.
  39. Sunahara, R .K, Seeman, P., Van Tol, H. H. and Niznik, H. B. (1993) Dopamine receptors and antipsychotic drug response. Br. J. Psychiatry Suppl. 22, 31-38.
  40. Toplak, H., Zuehlke, R., Loidl, S., Hermetter, A., Honegger, U. E. and Wiesmann, U. N. (1990) Single and multiple desipramine exposure of cultured cells. Biochem. Pharmacol. 39, 1437-1443. https://doi.org/10.1016/0006-2952(90)90425-K
  41. Widmer, J., Raffin, Y., Gaillard, J.-M. and Tissot, T. (1987) In vitro effects of short-chain aliphatic alcohols, benzyl alcohol and chlorpromazine on the transport of precursors of monoamines across the human erythrocyte membrane. Neuropsychobiology 18, 60-67. https://doi.org/10.1159/000118394
  42. Wood, W. G., Schroeder, F., Hogy, L., Rao, A. M. and Nemecz, G. (1990) Asymmetric distribution of a fluorescent sterol in synaptic plasma membranes: effects of chronic ethanol consumption. Biochim. Biophys. Acta 1025, 243-246. https://doi.org/10.1016/0005-2736(90)90103-U
  43. Yun, I. and Kang, J. S. (1990) The general lipid composition and aminophospholipid asymmetry of synaptosomal plasma membrane vesicles isolated from bovine cerebral cortex. Mol. Cells 1, 15-20.
  44. Yun, I., Kim, Y. S., Yu, S. H., Chung, I. K., Kim, I. S., Baik, S. W., Cho, G. J., Chung, Y. Z., Kim, S. H. and Kang, J. S. (1990) Comparison of several procedures for the preparation of synaptosomal plasma membrane vesicles. Arch. Pharm. Res. 13, 325-329. https://doi.org/10.1007/BF02858167
  45. Yun, I., Lee, S. -H. and Kang, J. S. (1994) The effect of ethanol on lateral and rotational mobility of plasma membrane vesicles isolated from cultured Mar 18.5 hybridoma cells. J. Membr. Biol. 138, 221-227.
  46. Yun, I., Yang, M. S., Kim, I. S. and Kang, J. S. (1993) Bulk vs. transbilayer effects of ethanol on the fluidity of the plasma membrane vesicles of cultured Chinese hamster ovary cells. Asia Pacific J. Pharmacol. 8, 9-16.
  47. Zachariasse, K. A., Vaz, W. L. C., Sotomayer, C. and Kühnle, W. (1982) Investigation of human erythrocyte ghost membranes with intramolecular excimer probes. Biochim. Biophys. Acta 688, 323-332. https://doi.org/10.1016/0005-2736(82)90343-1
  48. Zimmer, G. (1984) Fluidity of cell membranes in the presence of some drugs and inhibitors; in Biomembranes, Kates, M. and Manson, L. A. (eds.), pp. 169-203, Plenum, New York, USA.
  49. Zubenko, G. S. and Cohen, B. M. (1984) In vitro effects of psychotropic agents on the microviscosity of platelet membranes. Psychopharmacology 84, 289-292. https://doi.org/10.1007/BF00427463
  50. Zubenko, G. S. and Cohen, B. M. (1985a) Effects of phenothiazine treatment on the physical properties of platelet membranes from psychiatric patients. Biol. Psychiatry 20, 384-396. https://doi.org/10.1016/0006-3223(85)90041-1
  51. Zubenko, G. S. and Cohen, B. M. (1985b) Biophysical alterations in cell membranes associated with psychotherapeutic drug exposure, psychopathology, and aging. Psychopharmcol. Bull. 21, 631-640.
  52. Zubenko, G. S. and Cohen, B. M. (1985c) Effects of psychotropic agents on the physical properties of platelet membranes in vitro. Psychopharmacology 86, 369-373. https://doi.org/10.1007/BF00432231

Cited by

  1. Human cells and cell membrane molecular models are affected in vitro by chlorpromazine vol.135, pp.1-3, 2008, https://doi.org/10.1016/j.bpc.2008.02.014
  2. Effects of dimyristoylphosphatidylethanol and ethanol on thickness of neuronal membrane lipid bilayers vol.32, pp.10, 2009, https://doi.org/10.1007/s12272-009-2018-z
  3. Analysis of nanostructure of red blood cells membranes by space Fourier transform of AFM images vol.44, 2013, https://doi.org/10.1016/j.micron.2012.06.012
  4. The Effect of Methanol on the Structural Parameters of Neuronal Membrane Lipid Bilayers vol.16, pp.4, 2012, https://doi.org/10.4196/kjpp.2012.16.4.255
  5. Cytotoxicity of phenothiazine derivatives associated with mitochondrial dysfunction: A structure-activity investigation vol.330, 2015, https://doi.org/10.1016/j.tox.2015.02.004
  6. The effect of bupivacaine·HCl on the physical properties of neuronal membranes vol.234, pp.1-4, 2008, https://doi.org/10.1007/s00709-008-0017-4
  7. Mutually opposite effects of dopamine·HCl and chlorpromazine· HCl on the thickness of liposomal lipid bilayers vol.33, pp.5, 2010, https://doi.org/10.1007/s12272-010-0513-x
  8. Decreasing Effect of Lidocaine·HCl on the Thickness of the Neuronal and Model Membrane vol.17, pp.4, 2013, https://doi.org/10.4196/kjpp.2013.17.4.253
  9. Modification of membrane heterogeneity by antipsychotic drugs: An X-ray diffraction comparative study vol.320, pp.2, 2008, https://doi.org/10.1016/j.jcis.2008.01.034
  10. The effect of dimyristoylphosphatidylethanol on the lateral and rotational mobilities of liposome lipid bilayers vol.28, pp.7, 2005, https://doi.org/10.1007/BF02977351
  11. Effects of chlorpromazine on plasma membrane permeability and fluidity in the rat brain: A dynamic positron autoradiography and fluorescence polarization study vol.31, pp.1, 2007, https://doi.org/10.1016/j.pnpbp.2006.08.019
  12. The effect of propoxycaine·HCl on the physical properties of neuronal membranes vol.154, pp.1, 2008, https://doi.org/10.1016/j.chemphyslip.2008.03.009
  13. The Effect of Lidocaine · HCl on the Fluidity of Native and Model Membrane Lipid Bilayers vol.16, pp.6, 2012, https://doi.org/10.4196/kjpp.2012.16.6.413