DOI QR코드

DOI QR Code

The Gene Expression Profile of Cyst Epithelial Cells in Autosomal Dominant Polycystic Kidney Disease Patients

  • Lee, Jae-Eun (Department of Biological Science, Sookmyung Womens University) ;
  • Park, Min-Ha (Department of Biological Science, Sookmyung Womens University) ;
  • Park, Jong-Hoon (Department of Biological Science, Sookmyung Womens University)
  • Published : 2004.09.30

Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder characterized by the formation of fluid-filled cysts in the kidney and progressive renal failure. Other manifestations of ADPKD include the formation of cysts in other organs (liver, pancreas, and spleen), hypertension, cardiac defects, and cerebral aneurysms. The loss of function of the polycystin -1 and -2 results in the formation of epithelium-lined cysts, a process that depends on initial epithelial proliferation. cDNA microarrays powerfully monitor gene expression and have led to the discoveries of pathways regulating complex biological processes. We undertook to profile the gene expression patterns of epithelial cells derived from the cysts of ADPKD patients using the cDNA microarray technique. Candidate genes that were differently expressed in cyst tissues were identified. 19 genes were up-regulated, and 6 down-regulated. Semi-quantitative RT-PCR results were consistent with the microarray findings. To distinguish between normal and epithelial cells, we used the hierarchical method. The results obtained may provide a molecular basis for understanding the biological meaning of cytogenesis.

Keywords

References

  1. Boulter, C., Mulroy, S., Webb, S., Fleming, S., Brindle, K. and Sandford, R. (2001) Cardiovascular, skeletal, and renal defects in mice with a targeted disruption of the Pkd1 gene. Proc. Natl. Acad. Sci. USA 98, 12174-12179. https://doi.org/10.1073/pnas.211191098
  2. Christopher, W., Lars, J. J., Hanne, J., Randy, B., Laurent, G., Henrik, B. N., Hans-Henrik, S., Claus, N., Soren, B. and Steen, K. (2002) A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biol. 3, 1-16.
  3. DeRisi, J., Penland, L., Brown, P. O., Bittner, M. L., Meltzer, P. S., Ray, M., Chen, Y., Su, Y. A. and Trent, J. M. (1996) Use of a cDNA microarray to analyze gene expression patterns in human cancer. Nat. Genet. 14, 457-460. https://doi.org/10.1038/ng1296-457
  4. Fatima, M., Dirk, G. and Edgar, S. (2002) A simple method for elimination of false positive results in RT-PCR. J. Biochem. Mol. Biol. 35, 248-250. https://doi.org/10.5483/BMBRep.2002.35.2.248
  5. Guanqing, W. (2001) Current advances in molecular genetics of autosomal-dominant polycystic kidney disease. Curr. Opin. Nephrol. Hypertens. 10, 23-31. https://doi.org/10.1097/00041552-200101000-00005
  6. Guanqing, W. and Stefan, S. (2000) Molecular genetics and mechanism of autosomal dominant polycystic kidney disease. Mol. Genet. Metab. 69, 1-15. https://doi.org/10.1006/mgme.1999.2943
  7. Hanaoka, K., Qian, F., Boletta, A., Bhunia, A. K., Piontek, K., Tsiokas, L., Sukhatme, V. P., Guggino, W. B. and Germino, G. G. (2000) Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature 408, 990-994. https://doi.org/10.1038/35050128
  8. Herreo, J. A., Valencia, A. and Dopazo, J. (2001) A hierachical unsuperuised growing neural network for clustering gene expression patterns. Bioinformatics 17, 126-136. https://doi.org/10.1093/bioinformatics/17.2.126
  9. Lee, H. and Park, J. H. (2004) Informative gene selection method in tumor classification. Genomics Informatics 2, 19-29.
  10. Lockhart, D. J., Dong, H., Byrne, M. C., Follettie, M. T., Gallo, M. V., Chee, M. S., Mittmann, M., Wang, C., Kobayashi, M., Horton, H. and Brown, E. L. (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14, 1675-1680. https://doi.org/10.1038/nbt1296-1675
  11. Malmendal, A., Halpain, S. and Chazin, W. J. (2003) Nascent structure in the kinase anchoring domain of microtubuleassociated protein 2. Biochem. Biophys. Res. Commun. 301, 136-142. https://doi.org/10.1016/S0006-291X(02)02989-3
  12. Masaki, K., Naohiko, S., Sumio, S., Katsuyuki, H., Yasuhiko, M., Masa-aki, M., Kozo, K. and Masato, N. (2001) Identification of sonic hedgehog-responsive genes using cDNA microarray. Biochem. Biophys. Res. Commun. 289, 472-478. https://doi.org/10.1006/bbrc.2001.5976
  13. Michael, K. and Constantinou, D. (2000) Autosomal dominant polycystic kidney disease: molecular genetics and molecular pathogenesis. Hum. Genet. 107, 115-126. https://doi.org/10.1007/s004390000347
  14. Quackenbush, J. (2002) Microarray data normalization and transformation. Nat. Genet. 32, 496-501. https://doi.org/10.1038/ng1032
  15. Schena, M., Shalon, D., Davis, R.W. and Brown, P.O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467-470. https://doi.org/10.1126/science.270.5235.467
  16. Silvia, G-P, Keetae, K., Cristina, I., Alicia, E. D., Elsa, Z., Marisa, B., Peter, C. H., Ignacio, L. R. M., Amin, A. and Horacio, F. C. (2001) Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc. Natl. Acad. Sci. USA 98, 1182-1187. https://doi.org/10.1073/pnas.021456598
  17. van Adelsberg, J. S. (1999) The role of the polycystins in kidney development. Pediatr. Nephrol. 13, 454-459. https://doi.org/10.1007/s004670050639
  18. Xia, G., Xuping F., Tao L., Jian Z., Yao L., Qing W., Erliang Z., Yi, X., Yao, L. and Yumin, M. (2003) Determining a detectable threshold of signal intensity in cDNA microarray based on accumulated distribution. J. Biochem. Mol. Biol, 35, 558-564.
  19. Yee, H. Y., Sandrine, C., Percy, L., David, M., Lin, V. P., John, N. and Terence, P. S. (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30, 15. https://doi.org/10.1093/nar/30.4.e15

Cited by

  1. The Gene Encoding γ-Glutamyl Transpeptidase II in the Fission Yeast Is Regulated by Oxidative and Metabolic Stress vol.38, pp.5, 2005, https://doi.org/10.5483/BMBRep.2005.38.5.609
  2. Sustained cell proliferation of renal epithelial cells in mice withinvmutation vol.11, pp.10, 2006, https://doi.org/10.1111/j.1365-2443.2006.01011.x
  3. Overexpression of innate immune response genes in a model of recessive polycystic kidney disease vol.73, pp.1, 2008, https://doi.org/10.1038/sj.ki.5002627
  4. Polycystins, focal adhesions and extracellular matrix interactions vol.1812, pp.10, 2011, https://doi.org/10.1016/j.bbadis.2011.03.003
  5. Aquaporin-11 knockout mice and polycystic kidney disease animals share a common mechanism of cyst formation vol.22, pp.10, 2008, https://doi.org/10.1096/fj.08-111872