Five Computer Simulation Studies of Whole-Genome Fragment Assembly: The Case of Assembling Zymomonas mobilis ZM4 Sequences

  • Jung, Cholhee (Department of Computer Science and Engineering, Korea University, Institute of Bioinformatics, Macrogen Corp.) ;
  • Choi, Jin-Young (Department of Computer Science and Engineering, Korea University) ;
  • Park, Hyun Seck (Institute of Bioinformatics, Macrogen Corp., Department of Computer Science and Engineering, Ewha University) ;
  • Seo, Jeong-Sun (Institute of Bioinformatics, Macrogen Corp., School of Medicine, Seoul National University)
  • Published : 2004.12.01

Abstract

An approach for genome analysis based on assembly of fragments of DNA from the whole genome can be applied to obtain the complete nucleotide sequence of the genome of Zymomonas mobilis. However, the problem of fragment assembly raise thorny computational issues. Computer simulation studies of sequence assembly usually show some abnormal assemblage of artificial sequences containing repetitive or duplicated regions, and suggest methods to correct those abnormalities. In this paper, we describe five simulation studies which had been performed previous to the actual genome assembly process of Zymomonas mobilis ZM4.

Keywords

References

  1. Bailey, J.A., Yavor, A.M., Viggiano, L, Misceo, D., Horvath, J.E., Archidiacono, N., Schwartz, S., Rocchi, M., and Eichler, E.E. (2002). Human-specific duplication and mosaic transchpts: The recent paralogous structure of chromosome 22. Am. J. Hum. Genet. 70, 83-100 https://doi.org/10.1086/338458
  2. Bao, Z. and Eddy, S. (2002). Automated de novo Identification of repeat sequence families in sequenced genomics. Genome Res. 8, 1269-1276
  3. Batzoglou, S., Jaffe, D.B., Stanley, K., Butler, J., Gnerre, S., Mauceli, E., Berger, B., Mesirov, J.P., and Lander, E.S. (2002). Arachne: A whole-genome shotgun assembler Genome Res. 12, 177-189 https://doi.org/10.1101/gr.208902
  4. Chen, T. and Skiena, S. (2000). A case study in genome-level fragment assembly. Bioinformatics 16, 494-500 https://doi.org/10.1093/bioinformatics/16.6.494
  5. Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A.,Kirkness, E.F., Kerlavage, A.R., et al. (1995). WhoIe-Genome Random Sequencing and Assembly of H. influenzae. Science 269, 496-512 https://doi.org/10.1126/science.7542800
  6. Green, P., Documentation for phrap, http://bozeman.mbt.washington.edu/phrap.docs/phrap.html
  7. Kang, H.L. and Kang, H.S. (1998). A physical map of the genome of ethanol fermentative bacterium Zymomonas mobilis ZM4 and localization of genes on the map. Gene 206, 223-228 https://doi.org/10.1016/S0378-1119(97)00589-1
  8. Pevzner, P.A., Tang, H., Tesler, G. (2004). De Novo Repeat Classification and FragmentAssembly. Genome Research 14, 1786-1796 https://doi.org/10.1101/gr.2395204
  9. Seo, J.S., Chong, H., Park, H.S., Yoon, K.O., Jung, C., Kim, J.J., et al. (2005). The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nature Biotechnology, in press