Sap Collection and Major Components of Acer okamotoanum Nakai Native in Ullungdo

울릉도 자생 우산고로쇠나무의 수액채취와 주요성분

  • Moon, Hyun-Shik (Institute of Agriculture & Life Sci., Gyeongsang Natl. Univ.) ;
  • Kwon, Su-Duk (Dept. of Forest Inventory, Korea Forest Research Institute)
  • Published : 2004.06.30

Abstract

The collecting amount by DBH class and contents of mineral and free sugar in the sap of Acer okamotoanum Nakai being autogenous in Ullungdo were investigated. The total amount of sap was 376 l Sap of A. okamotoanum were increased with increasing DBH, 67 l (18%), 121 l (32%) and 188 l (50%) from small (below 18 cm), middle $(20{\sim}28\;cm)$ and large (above 30cm) diameter tree, respectively. Amounts of sap was required by big temperature fluctuation in day and night. The contents of solid, ash and sugar were 3.04%, 0.06% and 3.06% in the sap of A. okamotoanum. Free sugar determined in the sap was sucrose with 30.6 g/l, but glucose, fructose and maltose were not detected. The sap of A. okamotoanum was composed of seven kinds of mineral. The prominent minerals in the sap were Ca and K, and the concentrations of Ca and K were 522 mg/l and 309 mg/l, respectively.

우리나라의 을릉도에 자생하고 있는 우산고로쇠나무를 대상으로 흉고직경급별 수액 채취량과 수액 내 성분을 분석하였다. 우산고로쇠나무의 총 수액채취량은 376l 이었으며 흉고직경이 증가할수록 수액 채취량도 많았으며 총채취량에 대해 소 중 대경목이 각각18%, 32%, 50%의 비율을 나타내었다. 수액 채취량은 온도와 밀접한 관계가 있으며, 많은 양의 수액이 채취된 날의 기상조건은 일최고 최저기온의 온도격차가 크게 나타났다. 우산고로쇠나무 수액내의 고형분, 회분, 당도는 각각 3.04%, 0.06%, 3.06%로 나타났으며, 유리당은 자당 (30.6 g/l)이 높은 함량을 나타내었으나 포도당, 과당, 맥아당은 검출되지 않았다. 우산고로쇠나무 수액은 총 7종의 무기성분중 칼슘 (522 mg/l)과 칼륨 (309 mg/l)의 함량이 높은 것으로 나타났다.

Keywords

References

  1. Ahn WY (1975) Color index and coloring substances in Korean sugar maple, Acer mono Max. syrup, J Kor, For, Res. 26:712
  2. Chung MJ, Kim YS, Lee IS, Jo JS, Sung NJ (1995) The components of the sap from Gorosoe (Acer mono Max,) and sugar maple (Pseudo-sieboldianum Lom,). K. Kor. Soc, Food, Nutr. 24(6):911-916
  3. Cortes PM, Sinclair TR (1985) The role of osmotic potential in spring sap flow of mature sugar maple trees(Acer saccharum Marsh). J. Exp, Bot, 36(162) :12-24 https://doi.org/10.1093/jxb/36.1.12
  4. Fesyuk AV, Grimashevich VV (1980) Effects of different factors on the sap yield of Betula pendula, Kesovodstvo Lesnye Kultury pochvovedenie 9:89-94
  5. Houston DR, Allen DC, Lachance D (1990) Sugarbush management: a guide to maintaining tree health, Gen. Tech. Rep. NE Forest Exp. Sta. USDA For, Serv. NE-626
  6. Iguchi H, Terazawa M, Kayama T (1985) Conductive sap from Shira-kamba birch, Betula platyphylla Sukatchev var, Hara. Proceedings of the Hokkaido Bran. of the Jap. Wood Res, Soc, 17:49-52
  7. Jones ARC, Alli I (1987) Sap yields, sugar content, and soluble carbohydrates of saps and syrups of some Canadian birch and maple species, Can, J. For. Res. 17:263-266. https://doi.org/10.1139/x87-044
  8. KauffeldJ (1990) Sweet future. Ohio 21(4):4-5
  9. Kim CM, Jung AL, Sheo HJ (1991) A study on the ingredients in the sap of Acer mono Max. and Betula costata T. in Mt. Jiri Area - On the components of mineral and sugar -. J. Korean Soc. Food. Nutr. 20(5):479- 482
  10. Kim YT, Leech RH (1985) Effects of climatic conditions on sap flow in sugar maple. Forestry Chronicle 61:303-307
  11. Kriebel HB (1989) Genetic improvement of sugar maple for high sap sugar content I . Clone selection and seed orchard development. Can. J. For. Res. 19:917-923 https://doi.org/10.1139/x89-139
  12. Kwak AK (1995) Ecological studies on sap exudation in Acer mono Max. community. Mokpo Natl. Univ., PhD Thesis. p. 89-90
  13. Kwon SD (2003) A study on the sap of Acer mono, Acer mono for. rubripes and Acer okamotoanum. Gyeongsang Natl. Univ. , PhD Thesis. p. 48-54
  14. Melvin TI (1983) Maple sap uptake, exudation and pressure changes correlated with freeZing exotherms and thawing endotherms. Plant Physiol. 73:277-285 https://doi.org/10.1104/pp.73.2.277
  15. Laing FM, Howard DB (1990) Sap sweetness consistency vs. growth rates in young sugar maples. North J. Appl. For. 7:5-9
  16. Lee KJ, Cha YJ, ParklY, ParklH (1995) Effects of weather, site conditions, tree size and tapping methods on the spring sap flow of Acer mono Max. Res. Bull. Exp. Forests of Seoul Natl. Univ. 31:1-16
  17. Lee KJ, Park JY, Park KH, Park H (1995) Chemical composition, nutritional value, and saponin content in the spring sap of Acer mono. J. Kor. For. Res. 84(4):415-423.
  18. Lee TB (1982) Illustrated flora of Korea. Hyangmunsa. p. 522-524
  19. O'Malley PER, Milburn]A (1983) Freeze-induced fluctuations in xylem sap pressure in Acer pseudoplatanus. Can. J. Bot. 61:3100-3106 https://doi.org/10.1139/b83-349
  20. Plamondon AP, Bernier PY (1980) A model of sap flow in sugar maple (Acer saccharum Marsh.) based on meteorological elements. Can.J. For. Res. 10:152-157 https://doi.org/10.1139/x80-027
  21. Terazawa M, Koga T, Okuyama H, Miyake M (1984) Phenolic compounds in living tissues of woodsllI. Platyphylloside, a new diarylbeptanoid glucoside from the green bark of Shirakamba (Betula placyphylla Sucatchev var. japonica Hara. Mokuzai Gakkaishi. 30(5): 391-403
  22. Waseem M, Phipps J, Carbonneau R, Simmonds J (1991) Plant growth substances in sugar maple (Acer saccharum Marsh) spring sap. Identification of cytokinins, abscisic acid, and an indole compound. J. Plant Physiol. 138:489-493. https://doi.org/10.1016/S0176-1617(11)80528-6
  23. Willits CO (1965) Maple sirup producers manual. USDA Agri. Handbook. 134:112
  24. Yoon SL, Jo JS, Kim TO (1992) Utilization and tapping of the sap from Birches and Maples. Mokchae Konghak 20(4):15-20
  25. 산림청 (1995) 산주를 위한 새로운 임업기술. 산림청
  26. 산림청 (2002) 임업통계연보. 제32호. p. 407