DOI QR코드

DOI QR Code

Palladium(II) Schiff Base Complexes Derived from Allylamine and Vinylaniline

  • Uh, Yoon-Seo (Department of Chemistry, Mount Allison University) ;
  • Zhang, Hai-Wen (Department of Chemistry, Mount Allison University) ;
  • Vogels, Christopher M. (Department of Chemistry, Mount Allison University) ;
  • Decken, Andreae (Department of Chemistry, University of New Brunswick) ;
  • Westcott, Stephen A. (Department of Chemistry, Mount Allison University)
  • Published : 2004.07.20

Abstract

Condensation of salicylaldehyde $(2-HOC_6H_4C(O)H)$ with allylamine afforded the unsaturated salicylaldimine, $2-HOC_6H_4C(H)=NCH_2CH=CH_2$. Similar reactivity was observed with substituted salicylaldehydes. Further reaction of these Schiff bases with palladium acetate or $Na_2PdCl_4$ afforded complexes of the type $PdL_2$, where L = deprotonated Schiff base. The molecular structure of the parent salicylaldimine palladium complex $[trans-(2-OC_6H_4C(H)=NCH_2CH=CH_2)_2Pd]$ (1) was characterized by an X-ray diffraction study. Crystals of 1 were monoclinic, space group $P2_1/n,\;a\;=\;14.0005(9)\;{\AA},\;b\;=7.2964(5)\;{\AA},\;c\;=\;17.5103(12)\;{\AA},\;{\beta}\;=\;100.189(1)^{\circ}$, Z = 4. Analogous chemistry with 4-vinylaniline also gave novel palladium complexes containing a pendant styryl group. Crystals of $[trans-(2-HOC_6H_4C(H)=N-4-C_6H_4CH=CH_2)_2Pd]$ (4) were monoclinic, space group $P2_1/c$, a = 13.7710(14) ${\AA}$, b = 11.0348(11) ${\AA}$, c = 7.8192(8) ${\AA}$, ${\beta}\;=\;98.817(2)^{\circ}$, Z = 2.

Keywords

References

  1. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. https://doi.org/10.1021/cr00039a007
  2. Morin, C. Tetrahedron 1994, 50, 12521. https://doi.org/10.1016/S0040-4020(01)89389-3
  3. Weston, G. S.; Blazquez, J.; Baquero, F.; Shoichet, B. K. J. Med. Chem. 1998, 41, 4577. https://doi.org/10.1021/jm980343w
  4. Kettner, C. A.; Shenvi, A. B. J. Biol. Chem. 1984, 259, 15106.
  5. Martichonok, V.; Jones, J. B. J. Am. Chem. Soc. 1996, 118, 950 https://doi.org/10.1021/ja952816j
  6. Coutts, S. J.; Kelly, T. A.; Snow, R. J.; Kennedy, C. A.; Barton, R. W.; Adams, J.; Krolikowski, D. A.; Freeman, D. M.; Campbell, S. J.; Ksiazek, J. F.; Bachovchin, W. W. J. Med. Chem. 1996, 39, 2087. https://doi.org/10.1021/jm950732f
  7. Dembitsky, V. M.; Srebnik, M. Tetrahedron 2003, 59, 579. https://doi.org/10.1016/S0040-4020(02)01618-6
  8. Gao, C.; Lavey, B. J.; Lo, C.-H. L.; Datta, A.; Wentworth Jr., P.; Janda, K. D. J. Am. Chem. Soc. 1998, 120, 2211. https://doi.org/10.1021/ja9720220
  9. Yang, W.; Gao, X.; Wang, B. Med. Res. Rev. 2003, 23, 346. https://doi.org/10.1002/med.10043
  10. Westmark, P. R.; Gardiner, S. J.; Smith, B. D. J. Am. Chem. Soc. 1996, 118, 11093. https://doi.org/10.1021/ja961264h
  11. Takeuchi, M.; Imada, T.; Shinkai, S. J. Am. Chem. Soc. 1996, 118, 10658. https://doi.org/10.1021/ja961480q
  12. Soloway, A. H.; Tjarks, W.; Barnum, B. A.; Rong, F.-G.; Barth, R. F.; Codogni, I. M.; Wilson, J. G. Chem. Rev. 1998, 98, 1515. https://doi.org/10.1021/cr941195u
  13. Milovic, N. M.; Dutca, L.-M.; Kostic, N. M. Inorg. Chem. 2003, 42, 4036. https://doi.org/10.1021/ic026280w
  14. Tercero, J. M.; Matilla, A.; Sanjuan, M. A.; Moreno, C. F.; Martin, J. D.; Walmsley, J. A. Inorg. Chim. Acta 2003, 342, 77. https://doi.org/10.1016/S0020-1693(02)01071-X
  15. SAINT 6.02; Bruker AXS, Inc.: Madison, Wisconsin, USA, 1997-1999.
  16. Sheldrick, G. M. SADABS; Bruker AXS, Inc.: Madison, Wisconsin, USA, 1999.
  17. Sheldrick, G. M. SHELXTL 5.1; Bruker AXS, Inc.: Madison, Wisconsin, USA, 1997.
  18. King, A. S.; Nikolcheva, L. G.; Graves, C. R.; Kaminski, A.; Vogels, C. M.; Hudson, R. H. E.; Ireland, R. J.; Duffy, S. J.; Westcott, S. A. Can. J. Chem. 2002, 80, 1217. https://doi.org/10.1139/v02-145
  19. Holm, R. H.; O'Connor, M. J. Prog. Inorg. Chem. 1971, 14, 241. https://doi.org/10.1002/9780470166154.ch5
  20. Navarro-Ranninger, C.; Lopez-Solera, I.; Gonzalez, V. M.; Perez, J. M.; Alvarez-Valdes, A.; Martin, A.; Raithby, P. R.; Masaguer, J. R.; Alonso, C. Inorg. Chem. 1996, 35, 5181 https://doi.org/10.1021/ic960050y
  21. Jang, Y. J.; Mo, S. J.; Koo, B. K. Bull. Korean Chem. Soc. 1998, 19, 587. https://doi.org/10.1007/BF02699300
  22. Kim, J. S.; Kim, H. J.; Koo, B. K. Bull. Korean Chem. Soc. 1995, 16, 26.
  23. Kim, J. S.; Koo, B. K. Bull. Korean Chem. Soc. 1992, 13, 507.
  24. Bindlish, J. M.; Bhatia, S. C.; Gautam, P.; Jain, P. C. Ind. J. Chem. 1978, 16A, 279.
  25. Day, V. W.; Glick, M. D.; Hoard, J. L. J. Am. Chem. Soc. 1968, 90, 4803. https://doi.org/10.1021/ja01020a010
  26. Aiello, I.; Crispini, A.; Ghedini, M.; La Deda, M.; Barigelletti, F. Inorg. Chim. Acta 2000, 308, 121. https://doi.org/10.1016/S0020-1693(00)00216-4
  27. Bhatia, S. C.; Bindlish, J. M.; Saini, A. R.; Jain, P. C. J. Chem. Soc., Dalton Trans. 1981, 1773.
  28. Kuljian, E.; Frye, H. Z. Natursforsch. 1965, 20b, 204.
  29. Baleizno, C.; Gigante, B.; Garcia, H.; Corma, A. J. Catal. 2004, 221, 77. https://doi.org/10.1016/j.jcat.2003.08.016

Cited by

  1. Molecular design of mononuclear complexes of acyclic Schiff-base ligands vol.62, pp.2, 2009, https://doi.org/10.1080/00958970802398178
  2. Synthesis, Structural, and Antimicrobial Studies of Some New Coordination Compounds of Palladium(II) with Azomethines Derived from Amino Acids vol.2013, pp.2090-9071, 2013, https://doi.org/10.1155/2013/745101
  3. -butylsalicylidene)piperidin-4-amine: Synthesis, structure and catalytic applications in Suzuki-Miyaura coupling of arylboronic acids with hydroxyaryl halides vol.31, pp.11, 2017, https://doi.org/10.1002/aoc.3778
  4. Crystal structures and DFT analysis of Palladium(II) complexes with Schiff bases derived from N,N-dialkyl-p-phenylenediamines vol.1204, pp.None, 2020, https://doi.org/10.1016/j.molstruc.2019.127549
  5. Synthesis, Structure, DFT Calculations, and In Silico Toxic Potential of Ni(II), Zn(II), and Fe(II) Complexes with a Tridentate Schiff Base vol.91, pp.8, 2004, https://doi.org/10.1134/s107036322108020x