References
- Fukushima, M.; Obi, K. J. Chem. Phys. 1990, 93, 8488. https://doi.org/10.1063/1.459710
- Bindley, T. F.; Watts, A. T.; Walker, S. Trans. Faraday Soc. 1964,60, 1. https://doi.org/10.1039/tf9646000001
- Hiratsuka, H.; Mori, K.; Shizuka, H.; Fukushima, M.; Obi, K.Chem. Phys. Lett. 1989, 157, 35. https://doi.org/10.1016/0009-2614(89)87203-3
- Selco, J. I.; Carrick, P. G. J. Mol. Spectrosc. 1995, 173, 277. https://doi.org/10.1006/jmsp.1995.1233
- Selco, J. I.; Carrick, P. G. J. Mol. Spectrosc. 1989, 137, 13. https://doi.org/10.1016/0022-2852(89)90264-6
- Suh, M. H.; Lee, S. K.; Miller, T. A. J. Mol. Spectrosc. 1999, 194, 211. https://doi.org/10.1006/jmsp.1998.7787
- Lee, S. K.; Baek, D. Y. Chem. Phys. Lett. 1999, 301, 407. https://doi.org/10.1016/S0009-2614(98)01436-5
- Lee, S. K.; Ahn, B. U. Chem. Phys. Lett. 2000, 321, 25. https://doi.org/10.1016/S0009-2614(00)00325-0
- Lee, S. K.; Lee, S. K. J. Phys. Chem. A 2001, 105, 3034. https://doi.org/10.1021/jp003627c
- Lee, S. K.; Baek, D. Y. J. Phys. Chem. A 2000, 104, 5219. https://doi.org/10.1021/jp9944684
- Lee, S. K.; Baek, D. Y. Chem. Phys. Lett. 1999, 311, 36. https://doi.org/10.1016/S0009-2614(99)00834-9
- Lee, S. K.; Baek, D. Y. Chem. Phys. Lett. 1999, 304, 39. https://doi.org/10.1016/S0009-2614(99)00294-8
- Lee, S. K.; Chae, S. Y. J. Phys. Chem. A 2002, 106, 8054. https://doi.org/10.1021/jp020901p
- Lee, S. K.; Chae, S. Y. J. Phys. Chem. A 2001, 105, 5808. https://doi.org/10.1021/jp0045437
- Chae, S. Y.; Lee, S. K.; Kim, S.-H. Bull. Korean Chem. Soc. 2002,23, 795. https://doi.org/10.1007/BF02705930
- Fukushima, M.; Obi, K. Chem. Phys. Lett. 1996, 248, 269. https://doi.org/10.1016/0009-2614(95)01333-4
- Tokumura, K.; Udagawa, M.; Ozaki, T.; Itoh, M. Chem. Phys.Lett. 1987, 141, 558. https://doi.org/10.1016/0009-2614(87)85081-9
- Lee, S. K.; Ahn, B. U. Chem. Phys. Lett. 2000, 320, 601. https://doi.org/10.1016/S0009-2614(00)00263-3
- Lee, S. K.; Kim, Y. N. J. Phys. Chem. A 2004, 108, 3727. https://doi.org/10.1021/jp038013x
- Engelking, P. C. Chem. Rev. 1991, 91, 399. https://doi.org/10.1021/cr00003a006
- Droege, A. T.; Engelking, P. C. Chem. Phys. Lett. 1983, 96,316. https://doi.org/10.1016/0009-2614(83)80680-0
- Engelking, P. C. Rev. Sci. Instrum. 1986, 57, 2274. https://doi.org/10.1063/1.1138696
- Lee, S. K. Chem. Phys. Lett. 2002, 358, 110. https://doi.org/10.1016/S0009-2614(02)00595-X
- Han, M. S.; Choi, I. S.; Lee, S. K. Bull. Korean Chem. Soc. 1996,17, 991.
- Wiese, M. L.; Smith, M. W.; Glennon, B. M. Atomic TransitionProbabilities, NSRD-NBS4, 1966.
- Lee, S. K.; Chae, S. Y. Chem. Phys. 2002, 284, 625. https://doi.org/10.1016/S0301-0104(02)00799-1
- Fujii, M.; Yamauchi, M.; Takazawa, K.; Ito, M. SpectrochimicaActa 1994, 50A, 1421.
- Ichimura, T.; Kawana, A.; Suzuki, T.; Ebata, E.; Mikami, N. J.Photochem. Photobiol. A: Chem. 1994, 80, 145. https://doi.org/10.1016/1010-6030(94)01042-0
Cited by
- The electronic spectroscopy of resonance-stabilised hydrocarbon radicals vol.35, pp.2, 2016, https://doi.org/10.1080/0144235X.2016.1166830
- Spectroscopic Evidence of Vibronic Relaxation in Methyl Substituted Benzyl Radicals vol.26, pp.12, 2004, https://doi.org/10.5012/bkcs.2005.26.12.1931
- Observation of Jet-Cooled 2,6-Dichlorobenzyl Radical in a Corona Excited Supersonic Expansion vol.26, pp.8, 2004, https://doi.org/10.5012/bkcs.2005.26.8.1164
- Vibronic Emission Spectrum of Jet-Cooled o-Tolunitrile in a Corona Excited Supersonic Expansion vol.27, pp.6, 2004, https://doi.org/10.5012/bkcs.2006.27.6.881
- Assignment of Vibronic Emission Spectra of Jet-Cooled m-Tolunitrile vol.27, pp.9, 2004, https://doi.org/10.5012/bkcs.2006.27.9.1377
- Vibronic Structure of Jet-Cooled 2,6-Dimethylbenzyl Radical: Revisited vol.110, pp.6, 2006, https://doi.org/10.1021/jp055462j