DOI QR코드

DOI QR Code

Characterization of Linear Polymer-Dendrimer Block Copolymer/Plasmid DNA Complexes: Formation of Core-shell Type Nanoparticles with DNA and Application to Gene Delivery in Vitro

  • Choi, Joon-Sig (Department of Biochemistry, Chungnam National University) ;
  • Choi, Young-Hun (Pulmonary Critical-Care Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda) ;
  • Park, Jong-Sang (School of Chemistry & Molecular Engineering, Seoul National University)
  • Published : 2004.07.20

Abstract

A hybrid linear polymer-dendrimer block copolymer, poly(ethylene glycol)-block-poly(L-lysine) dendrimer, was synthesized and introduced to form polyionic complexes with DNA. The copolymer formed core-shell type nanoparticles with plasmid DNA. From dynamic light scattering experiments, the mean diameter of the polyplexes was observed to be 154.4 nm. The complex showed much increased water solubility compared to poly(L-lysine). The plasmid DNA in polyplexes was efficiently protected from the enzymatic digestion of DNase I. The cytotoxicity and transfection efficiency for 293 cells was measured in comparison with poly(Llysine).

Keywords

References

  1. Ledley, F. D. Hum. Gene Ther. 1995, 6, 1129. https://doi.org/10.1089/hum.1995.6.9-1129
  2. Boussif, O.; Lezoualch, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J.-P. Proc. Natl. Acad. Sci. USA 1995, 92, 7297. https://doi.org/10.1073/pnas.92.16.7297
  3. Kukowska-Latallo, J. F.; Bielinska, A. U.; Johnson, J.; Spindler, R.; Tomalia, D. A.; Baker, J. R., Jr. Proc. Natl. Acad. Sci. USA 1996, 93, 4897. https://doi.org/10.1073/pnas.93.10.4897
  4. Kataoka, K.; Kwon, G. S.; Yokoyama, M.; Okano, T.; Sakurai, Y. J. Controlled Release 1993, 24, 119. https://doi.org/10.1016/0168-3659(93)90172-2
  5. Kabanov, A. V.; Vinogradov, S. V.; Suzdaltseva, Y. G.; Alakhov, V. Y. Bioconjugate Chem. 1995, 6, 639. https://doi.org/10.1021/bc00036a001
  6. Wolfert, M. A.; Schacht, E. H.; Toncheva, V.; Ulbrich, K.; Nazarova, O.; Seymour, L. W. Hum. Gene Ther. 1996, 7, 2123. https://doi.org/10.1089/hum.1996.7.17-2123
  7. Kataoka, K.; Togawa, H.; Harada, A.; Yasugi, K.; Matsumoto, T.; Katayose, S. Macromolecules 1996, 29, 8556. https://doi.org/10.1021/ma961217+
  8. Nguyen, H.-K.; Lemieux, P.; Vinogradov, S. V.; Gebhart, C. L.; Guerin, N.; Paradis, G.; Bronich, T. K.; Alakhov, V. Y.; Kabanov, A. V. Gene Ther. 2000, 7, 126. https://doi.org/10.1038/sj.gt.3301052
  9. Lee, R. J.; Huang, L. J. Biol. Chem. 1996, 271, 8481. https://doi.org/10.1074/jbc.271.14.8481
  10. Bayer, E.; Mutter, M. In The Peptides; Gross, E.; Meienhofer, J., Eds.; Academic Press: New York, 1979; Vol. 2, p 285.
  11. Denkewalter, R. G.; Kolc, J.; Lukasavage, W. J. U.S. Patent 1981, 4,289,872, Sept 15.
  12. Roy, R.; Zanini, D.; Meunier, S. J.; Romanowska, A. J. Chem. Soc., Chem. Commun. 1993, 1869.
  13. Chapman, T. M.; Hillyer, G. L.; Mahan, E. J.; Shaffer, K. A. J. Am. Chem. Soc. 1994, 116, 11195. https://doi.org/10.1021/ja00103a060
  14. Choi, J. S.; Lee, E. J.; Choi, Y. H.; Jeong, Y. J.; Park, J. S. Bioconjugate Chem. 1999, 10, 62. https://doi.org/10.1021/bc9800668
  15. Lee, S.; Suraiya, R. BioTechniques 1990, 9, 676.
  16. Choy, J. H.; Kwak, S. Y.; Park, J. S.; Jeong, Y. J.; Portier, J. J. Am. Chem. Soc. 1999, 121, 1399. https://doi.org/10.1021/ja981823f
  17. Choi, Y. H.; Liu, F.; Park, J. S.; Kim, S. W. Bioconjugate Chem. 1998, 9, 708. https://doi.org/10.1021/bc980017v
  18. Mosman, T. J. Immunol. Methods 1983, 65, 55. https://doi.org/10.1016/0022-1759(83)90303-4
  19. Promega Corp. Promega Technical Bulletin, 1996, Part # TB 097, 1.
  20. Katayose, S.; Kataoka, K. Bioconjugate Chem. 1997, 8, 702. https://doi.org/10.1021/bc9701306
  21. Kim, T.; Jang, H.; Joo, D. K.; Choi, J. S.; Park, J. Bull. Korean Chem. Soc. 2003, 24, 123. https://doi.org/10.5012/bkcs.2003.24.1.123
  22. Lim, Y. B.; Choi, Y. H.; Park, J. S. J. Am. Chem. Soc. 1999, 121, 5633. https://doi.org/10.1021/ja984012k
  23. Katayose, S.; Kataoka, K. J. Pharm. Sci. 1998, 87, 160. https://doi.org/10.1021/js970304s
  24. Choi, J. H.; Choi, J. S.; Suh, H.; Park, J. S. Bull. Korean Chem. Soc. 2001, 22, 46.

Cited by

  1. PEG-dendritic block copolymers for biomedical applications vol.36, pp.2, 2012, https://doi.org/10.1039/C2NJ20849K
  2. Responsive Linear-Dendritic Block Copolymers vol.35, pp.12, 2014, https://doi.org/10.1002/marc.201400007
  3. Synthesis of Fréchet-type Dendrimers with Tripodal Core via Staudinger/Aza-Wittig Reactions vol.38, pp.3, 2014, https://doi.org/10.7317/pk.2014.38.3.386
  4. Hybridization by an Electrical Force and Electrochemical Genome Detection Using an Indicator-free DNA on a Microelectrode-array DNA Chip vol.26, pp.3, 2004, https://doi.org/10.5012/bkcs.2005.26.3.379
  5. A Facile Route to Triazole Dendrimers via Click Chemistry Linking Tripodal Acetylene and Dendrons vol.26, pp.4, 2004, https://doi.org/10.5012/bkcs.2005.26.4.658
  6. Convergent Synthesis of Triazole Dendrimers via Click Chemistry Using Tripodal Core vol.26, pp.5, 2004, https://doi.org/10.5012/bkcs.2005.26.5.833
  7. Synthesis of 3β [L-Lysinamide-carbamoyl] Cholesterol Derivatives by Solid-Phase Method and Characteristics of Complexes with Antisense Oligodeoxynucleotides vol.27, pp.7, 2004, https://doi.org/10.5012/bkcs.2006.27.7.1020
  8. Facile Approach for Diblock Codendrimers by Fusion between Fréchet Dendrons and PAMAM Dendrons vol.71, pp.13, 2004, https://doi.org/10.1021/jo0605905
  9. Preparation of Polymeric Microparticles by Horizontal Rotating vol.30, pp.12, 2009, https://doi.org/10.5012/bkcs.2009.30.12.3066
  10. Polymeric Nano-half-shells Prepared by Simple Solvent Evaporation Method vol.30, pp.2, 2009, https://doi.org/10.5012/bkcs.2009.30.2.486
  11. Polymeric Nano-half-shells prepared by Simple Solvent Evaporation Method vol.30, pp.1, 2004, https://doi.org/10.5012/bkcs.2009.30.1.001
  12. Linear–dendritic block copolymers: The state of the art and exciting perspectives vol.36, pp.1, 2011, https://doi.org/10.1016/j.progpolymsci.2010.07.009