DOI QR코드

DOI QR Code

InCl3-Catalyzed Regioselective Ring-Opening Reactions of Epoxides to β-Hydroxy Ethers

  • Published : 2004.06.20

Abstract

By applying a catalytic amount of indium trichloride, regioselective ring-opening of epoxides to ${\beta}$-hydroxy ethers was established. While the alcoholysis of styrene oxides produed $S_N1$-type product, the alcoholysis of ${\alpha}$-heteroatom-substituted epoxides predominantly produced $S_N2$-type product.

Keywords

References

  1. Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis;John Wiley: New York, 1989.
  2. Kino, T.; Hatanaka, H.; Hashimato, M.; Nishiyama, M.; Goto, T.; Okuhara, M.; Kohsaka, M.; Aoki, H.; Imanaka, H. J. Antibiot. 1987, 40, 1249. https://doi.org/10.7164/antibiotics.40.1249
  3. Olah, G. A.; Fung, A. P.; Meider, D. Synthesis 1981, 280.
  4. Posner, G. H.; Rogers, D. Z. J. Am. Chem. Soc. 1977, 99, 8208. https://doi.org/10.1021/ja00467a014
  5. Cabrera, A.; Rosas, N.; Marquez, C.; Salmon, M.; Angeles, E.;Miranda, R.; Lozano, R. Guzz. Chim. Ital. 1991, 121, 127.
  6. Niibo, Y.; Nakata, T.; Otera, J.; Nozaki, H. Synlett 1991, 97.
  7. Otera, J.; Niibo, Y.; Nozaki, H. Tetrahedron 1991, 47, 7625. https://doi.org/10.1016/S0040-4020(01)88286-7
  8. Chini, M.; Crotti, P.; Gardelli, C.; Macchia, F. Synlett 1992, 673.
  9. Iranpoor, N.; Tamami, B.; Niknam, K. Can. J. Chem. 1997, 75, 1913. https://doi.org/10.1139/v97-626
  10. Iranpoor, N.; Mohammadpour Baltork, I. Synth.Commun. 1990, 20, 2789. https://doi.org/10.1080/00397919008051491
  11. Iranpoor, N.; Salehi, P. Synthesis 1994, 1152.
  12. Iranpoor, N.; Baltork, I. M. Tetrahedron Lett. 1990, 31, 735. https://doi.org/10.1016/S0040-4039(00)94616-1
  13. Posner, G. H.; Rogers, D. Z.; Kinzig, C. H.; Gurria, G.M. Tetrahedron Lett. 1975, 3597.
  14. Likhar, P. R.; Kumar, M. P.; Bandyopadhyay, A. K. Synlett 2001, 836.
  15. Miyai, T.; Onishi, Y.; Baba, A. Tetrahedron 1999, 55, 1017. https://doi.org/10.1016/S0040-4020(98)01130-2
  16. Inoue, K.; Shimizu, Y.; Shibata, I.; Baba, A. Synlett 2001, 1659.
  17. Sengupta, S.; Mondal, S. Tetrahedron Lett. 1999, 40, 8685. https://doi.org/10.1016/S0040-4039(99)01843-2
  18. Ranu, B. C.; Hajra, A.; Jana, U. J. Org. Chem. 2000, 65, 6270. https://doi.org/10.1021/jo000711f
  19. Babu, G.; Perumal, P. T. Aldrich. Acta 2000, 33, 16.
  20. Chauhan, K. K.; Frost, C. G. J. Chem. Soc. Perkin Trans. 1 2000, 3015.
  21. Ranu, B. C. Eur. J. Org. Chem. 2000, 2347.
  22. Yadav, J. S.; Abraham, S.; Reddy, B. V. S.; Abitha, G. S. Synthesis 2001, 2165.
  23. Amantini, D.; Fringuelli, F.; Pizzo, F.; Vaccaro, L. J. Org. Chem. 2001, 66, 4463. https://doi.org/10.1021/jo0156215
  24. Yadav, J. S.; Reddy, B. V. S.; Kumar, G. M.; Madan, C. Synlett 2001, 1781.
  25. Yadav, J. S.; Reddy, B. V. S.; Kumar, G. M. Synlett 2001, 1417.
  26. Sengupta, S.; Mondal, S. Tetrahedron Lett. 2000, 41, 6245. https://doi.org/10.1016/S0040-4039(00)01042-X
  27. Babu, B. S.; Balasubramanian, K. K. J. Org. Chem.2000, 65, 4198. https://doi.org/10.1021/jo000074t
  28. Ranu, B. C.; Hajra, A.; Jana, U. TetrahedronLett. 2000, 41, 531. https://doi.org/10.1016/S0040-4039(99)02111-5
  29. Yadav, J. S.; Reddy, B. V. S.; Madhuri, C. H.; Sabitha, G. Chem. Lett. 2001, 18.
  30. Muthusamy, S.; Babu, S. A.; Gunanathan, C. Tetrahedron Lett. 2001, 42, 359. https://doi.org/10.1016/S0040-4039(99)02266-2
  31. Babu, B. S.; Balasubramanian, K. K. Tetrahedron Lett. 2000, 41, 1271. https://doi.org/10.1016/S0040-4039(00)01966-3
  32. Ranu, B. C.; Jana, U. J. Org. Chem. 1998, 63, 8212. https://doi.org/10.1021/jo980793w
  33. Reddy, B. G.; Kumareswaran, R.; Vankar, Y. D. Tetrahedron Lett. 2000, 41,10333. https://doi.org/10.1016/S0040-4039(00)01857-8
  34. Loh, T.-P.; Feng, L.-C.; Wei, L.-L. Tetrahedron 2001, 57, 4231. https://doi.org/10.1016/S0040-4020(01)00309-X
  35. Inoue, K.; Yasuda, M.; Shibata, I.; Baba, A.Tetrahedron Lett. 2000, 41, 113. https://doi.org/10.1016/S0040-4039(99)02016-X
  36. Han, J. S.; Kim, S. B.;Mukaiyama, T. Bull. Korean Chem. Soc. 1994, 15, 529.
  37. Lee, S.-G.; Lee, J. K.; Song, C. E.; Kim, D.-C. Bull. Korean Chem. Soc.2002, 23, 667. https://doi.org/10.5012/bkcs.2002.23.5.667
  38. Iranpoor, N.; Tarrian, T.; Movahedi, Z. Synthesis 1996, 1473.
  39. Blumenstein, J. J.; Ukachukwu, V. C.; Mohan, R. S.; Whalen, D.L. J. Org. Chem. 1993, 58, 924. https://doi.org/10.1021/jo00056a027
  40. Tamami, B.; Iranpoor, N.; Mahdavi, H. Synth. Commun. 2002, 32,1251. https://doi.org/10.1081/SCC-120003617
  41. Moreno-Dorado, F. J.; Guerra, F. M.; Ortega, M. J.; Zubia, E.;Massanet, G. M. Tetrahedron: Asymmetry 2003, 14, 503. https://doi.org/10.1016/S0957-4166(03)00023-5
  42. Otera, J.; Yoshinaga, Y.; Hirakawa, K. Tetrahedron Lett. 1985, 26,3219. https://doi.org/10.1016/S0040-4039(00)98156-5
  43. Iranpoor, N.; Zardaloo, F. S. Synth. Commun. 1994, 24, 1959. https://doi.org/10.1080/00397919408010203
  44. Dalla, V.; Decroix, B. Tetrahedron Lett. 2002, 43, 1657. https://doi.org/10.1016/S0040-4039(02)00120-X
  45. Karpyak, V. V.; Obushak, N. D.; Ganushchak, N. I. Russ. J. Org.Chem. 1994, 30, 1692.
  46. Gais, H.-J.; Jungen, M.; Jadhav, V. J. Org. Chem. 2001, 66, 3384. https://doi.org/10.1021/jo0016881
  47. Jungen, M.; Gais, H.-J. Tetrahedron: Asymmetry 1999, 10, 3747. https://doi.org/10.1016/S0957-4166(99)00380-8
  48. Iranpoor, N.; Shekarriz, M.; Shiriny, F. Synth. Commun. 1998, 28,347. https://doi.org/10.1080/00397919808005728
  49. Safavi, A.; Iranpoor, N.; Fotuhi, L. Bull. Chem. Soc. Jpn. 1995,68, 2591. https://doi.org/10.1246/bcsj.68.2591
  50. Iranpoor, N.; Firouzabadi, H.; Chitsazi, M.; Jafari, A. A.Tetrahedron 2002, 58, 7037. https://doi.org/10.1016/S0040-4020(02)00699-3

Cited by

  1. Epoxide Ring-Opening Reactions with Mesoporous Silica-Supported Fe(III) Catalysts vol.1, pp.5, 2011, https://doi.org/10.1021/cs1001256
  2. CuO/SiO2: a simple and efficient solid acid catalyst for epoxide ring opening vol.13, pp.3, 2011, https://doi.org/10.1039/c0gc00719f
  3. Sulphated yttria–zirconia as a regioselective catalyst system for the alcoholysis of epoxides vol.2, pp.7, 2012, https://doi.org/10.1039/c2cy20116j
  4. Catalysts for the Regioselective Ring-Opening of 1,2-Epoxyhexane with Methanol vol.5, pp.1, 2012, https://doi.org/10.1002/cctc.201200494
  5. Spectroscopic Studies on the Reaction between Amino Groups on Silica Nanoparticle Surface and Glycidyl Methacrylate vol.37, pp.6, 2013, https://doi.org/10.7317/pk.2013.37.6.777
  6. Sulfur and iron co-doped titanoniobate nanosheets: a novel efficient solid acid catalyst for alcoholysis of styrene epoxide at room temperature vol.49, pp.68, 2013, https://doi.org/10.1039/c3cc42951b
  7. Well-defined epoxide-containing styrenic polymers and their functionalization with alcohols vol.54, pp.8, 2016, https://doi.org/10.1002/pola.27952
  8. Oxidomolybdenum complexes for acid catalysis using alcohols as solvents and reactants vol.6, pp.13, 2016, https://doi.org/10.1039/C5CY02052B
  9. InCl3-Catalyzed Regioselective Ring-Opening Reactions of Epoxides to β-Hydroxy Ethers. vol.35, pp.45, 2004, https://doi.org/10.1002/chin.200445087
  10. Antibacterial Coating of Glass Fiber Filters with Silver Nanoparticles (AgNPs) and Glycidyltrimethylammonium Chloride (GTAC) vol.19, pp.10, 2018, https://doi.org/10.1007/s12221-018-8107-1
  11. Microwave-Assisted, Asymmetric Synthesis of 3-Amino-2,3-Dihydrobenzofuran Flavonoid Derivatives from Chalcones vol.24, pp.18, 2018, https://doi.org/10.1002/chem.201705984
  12. Nucleophilic ring-opening of epoxides: trends in β-substituted alcohols synthesis vol.15, pp.9, 2018, https://doi.org/10.1007/s13738-018-1400-5
  13. Synthesis and characterization of allyl functionalized poly(α-hydroxy)acids and their further dihydroxylation and epoxidation vol.44, pp.2, 2004, https://doi.org/10.1016/j.eurpolymj.2007.12.004
  14. Amberlyst-15 as a new and reusable catalyst for regioselective ring-opening reactions of epoxides to β-alkoxy alcohols vol.296, pp.1, 2008, https://doi.org/10.1016/j.molcata.2008.09.003
  15. Investigation of copper(II) tetrafluoroborate catalysed epoxide opening vol.52, pp.52, 2004, https://doi.org/10.1016/j.tetlet.2011.10.090
  16. Regio- and stereoselective synthesis of new diaminocyclopentanols vol.10, pp.None, 2004, https://doi.org/10.3762/bjoc.10.262
  17. A highly efficient protocol for regioselective ring-opening of epoxides with alcohols, water, acetic acid, and acetic anhydride catalyzed by SbF3 vol.191, pp.7, 2004, https://doi.org/10.1080/10426507.2015.1135439
  18. Phytotoxic Potential of Secondary Metabolites and Semisynthetic Compounds from Endophytic Fungus Xylaria feejeensis Strain SM3e-1b Isolated from Sapium macrocarpum vol.64, pp.21, 2004, https://doi.org/10.1021/acs.jafc.6b01111
  19. Sequential DMC/FAB-Catalyzed Alkoxylation toward High Primary Hydroxyl, High Molecular Weight Polyether Polyols vol.49, pp.18, 2004, https://doi.org/10.1021/acs.macromol.6b01363
  20. Mechanism of Regioselective Ring-Opening Reactions of 1,2-Epoxyoctane Catalyzed by Tris(pentafluorophenyl)borane: A Combined Experimental, Density Functional Theory, and Microkinetic Study vol.8, pp.12, 2004, https://doi.org/10.1021/acscatal.8b02632
  21. Efficient and Regioselective Ring-opening of Epoxides with Carboxylic Acid Catalyzed by Graphite Oxide vol.17, pp.7, 2020, https://doi.org/10.2174/1570178616666190401194252
  22. Cellulose sulfate: An efficient heterogeneous catalyst for the ring-opening of epoxides with alcohols and anilines vol.51, pp.12, 2004, https://doi.org/10.1080/00397911.2021.1910304