DOI QR코드

DOI QR Code

A Model for Correlation of Various Solvatochromic Parameters with Composition in Aqueous and Organic Binary Solvent Systems

  • Aziz, Habibi-Yangjeh (Department of Chemistry, Faculty of Science, University of Mohaghegh Ardebili)
  • Published : 2004.08.20

Abstract

The applicability of the combined nearly ideal binary solvent/Redlich-Kister (CNIBS/R-K) equation for correlation of various solvatochromic parameters (SP) with composition is shown employing 84 experimental data sets for aqueous and organic binary solvent systems at temperatures ranging 15 to $75^{\circ}C$. The model provides a simple computational model to correlate/predict different SP values in various binary solvent systems. In proposed equations, $MPD_s$ (mean percentage deviations) are between 0.0500% and 6.9591% in mixtures of dimethyl sulfoxide with 2-methylpropan-2-ol and benzene with 2-methylpropan-2-ol, respectively. Correlation of the calculated and experimental values of various SP give an equation with an overall mean percentage deviation (OMPD) of 1.1900, $R^2$ = 0.99692, s.e = 0.01223 and F = 341925.51. Approximately 70% of the calculated SP values have IPD (individual percentage deviation) lower than one and it is possible to predict unmeasured SP values by using only eight experimental data.

Keywords

References

  1. Reichardt, C. Solvents and Solvent Effects in Organic Chemistry,2nd ed; VCH: 1988; 165.
  2. Marcus, Y. J. Chem. Soc. Perkin Trans. 2 1994, 1015.
  3. Engberts, J. B. F. N.; Blandamer, M. J. J. Phys. Org. Chem. 1998,11, 841. https://doi.org/10.1002/(SICI)1099-1395(199812)11:12<841::AID-POC100>3.0.CO;2-O
  4. Streefland, L.; Blandamer, M. J.; Engberts, J. B. F. N. J. Chem.Soc. Perkin Trans. 2 1997, 769.
  5. Repasky, M. P.; Jorgensen, W. L. Faraday Discuss. Chem. Soc.1998, 110, 379. https://doi.org/10.1039/a802427h
  6. Cativiela, C.; Garcia, J. I.; Mayoral, J. A.; Royo, A. J.; Salvatella,L.; Assfeld, X.; Ruiz-Lopez, M. F. J. Phys. Org. Chem. 1992, 5,230. https://doi.org/10.1002/poc.610050503
  7. Engberts, J. B. F. N. Pure Appl. Chem. 1995, 67, 823. https://doi.org/10.1351/pac199567050823
  8. Cativiela, C.; Garcia, J. I.; Gil, J.; Martinez, R. M.; Mayoral, J. A.;Salvatella, L.; Urieta, J. S.; Mainer, A. M.; Abraham, M. H. J.Chem. Soc. Perkin Trans. 2 1997, 653.
  9. Gholami, M. R.; Habibi, Y. A. J. Chem. Res.(S) 1999, 226.
  10. Gholami, M. R.; Habibi, Y. A. Int. J. Chem. Kinet. 2000, 32, 431. https://doi.org/10.1002/(SICI)1097-4601(2000)32:7<431::AID-KIN5>3.0.CO;2-J
  11. Gholami, M. R.; Habibi, Y. A. J. Phys. Org. Chem. 2000, 13, 468. https://doi.org/10.1002/1099-1395(200008)13:8<468::AID-POC258>3.0.CO;2-E
  12. Gholami, M. R.; Habibi, Y. A. Int. J. Chem. Kinet. 2001, 33, 118. https://doi.org/10.1002/1097-4601(200102)33:2<118::AID-KIN1003>3.0.CO;2-U
  13. Habibi, Y. A.; Gholami, M. R.; Mostaghim, R. J. Phys. Org.Chem. 2001, 12, 884.
  14. Habibi, Y. A.; Gholami, M. R. Indian J. Chem. 2003, 42B, 895.
  15. Habibi, Y. A. Indian J. Chem. 2003, 42B, 1478.
  16. Reichardt, C. Chem. Rev. 1994, 94, 2319. https://doi.org/10.1021/cr00032a005
  17. Kamlet, M. J.; Taft, R. W. J. Am. Chem. Soc. 1976, 98, 377. https://doi.org/10.1021/ja00418a009
  18. Kamlet, M. J.; Taft, R. W. J. Am. Chem. Soc. 1976, 98, 2886. https://doi.org/10.1021/ja00426a036
  19. Kamlet, M. J.; Abboud, J.-L. M.; Taft, R. W. J. Am. Chem. Soc.1977, 99, 6022.
  20. Kamlet, M. J.; Abboud, J.-L. M.; Abraham, M. H.; Taft, R. W. J.Org. Chem. 1983, 48, 2877. https://doi.org/10.1021/jo00165a018
  21. Acree Jr, W. E. Thermochim. Acta 1992, 198, 71. https://doi.org/10.1016/0040-6031(92)85059-5
  22. Barzegar-Jalali, M.; Jouyban, A.; Hanaee, J.; Chookhachizadeh-Moghaddam, M. H. Int. J. Pharm. 1996, 144, 127. https://doi.org/10.1016/S0378-5173(96)04717-5
  23. Barzegar-Jalali, M.; Jouyban, A. Int. J. Pharm. 1996, 140, 237. https://doi.org/10.1016/0378-5173(96)04557-7
  24. Barzegar-Jalali, M.; Jouyban, A. Int. J. Pharm. 1997, 152, 247. https://doi.org/10.1016/S0378-5173(97)04922-3
  25. Jouyban, A.; Acree Jr, W. E. Int. J. Pharm. 1998, 167, 177. https://doi.org/10.1016/S0378-5173(98)00073-8
  26. Jouyban, A.; Barzegar-Jalali, M.; Acree Jr, W. E. Int. J. Pharm.1998, 166, 205. https://doi.org/10.1016/S0378-5173(98)00044-1
  27. Jouyban, A.; Valaee, L.; Barzegar-Jalali, M.; Clark, B. J.; Acree Jr,W. E. Int. J. Pharm. 1999, 177, 93. https://doi.org/10.1016/S0378-5173(98)00333-0
  28. Jouyban, A.; Khaledi, M. G.; Clark, B. J. J. Chromatogr. A 2000,868, 277. https://doi.org/10.1016/S0021-9673(99)01258-3
  29. Jouyban, A.; Chan, H. K.; Barzegar-Jalali, M.; Acree Jr, W. E. Int.J. Pharm. 2002, 243, 167. https://doi.org/10.1016/S0378-5173(02)00276-4
  30. Jouyban, A.; Grosse, S. C.; Chan, H. K.; Coleman, M. W.; Clark,B. J. J. Chromatogr. A 2003, 994, 191. https://doi.org/10.1016/S0021-9673(03)00387-X
  31. Jouyban, A.; Chan, H. K.; Khoubnasabjafari, M.; Clark, B. J. J.Pharm. Biomed. Anal. 2003, 32, 203. https://doi.org/10.1016/S0731-7085(03)00093-1
  32. Jouyban, A.; Hanaee, J. Int. J. Pharm. 1997, 154, 245. https://doi.org/10.1016/S0378-5173(97)00136-1
  33. Jouyban, A.; Soltanpour, S.; Chan, H. K. Int. J. Pharm. 2004, 269,353. https://doi.org/10.1016/j.ijpharm.2003.09.010
  34. Shwierczynski, R. D.; Connors, K. A. J. Chem. Soc. Perkin Trans.2 1994, 467.
  35. Bosch, E.; Rived, F.; Roses, M. J. Chem. Soc. Perkin Trans. 21996, 2177.
  36. Bosch, E.; Roses, M.; Herodes, K.; Koppel, I.; Leito, I.; Koppel,I.; Taal, V. J. Phys. Org. Chem. 1996, 9, 403. https://doi.org/10.1002/(SICI)1099-1395(199606)9:6<403::AID-POC799>3.0.CO;2-D
  37. Rafols, C.; Roses, M.; Bosch, E. J. Chem. Soc. Perkin Trans. 21997, 243.
  38. Roses, M.; Buhvestov, U.; Rafols, C.; Rived, F.; Bosch, E. J.Chem. Soc. Perkin Trans. 2 1997, 1341.
  39. Buhvestov, U.; Rived, F.; Rafols, C.; Bosch, E.; Roses, M. J. Phys.Org. Chem. 1998, 11, 185. https://doi.org/10.1002/(SICI)1099-1395(199803)11:3<185::AID-POC993>3.0.CO;2-5
  40. Leitao, R. E.; Martins, F.; Ventura, M. C.; Nunes N. J. Phys. Org.Chem. 2002, 15, 623. https://doi.org/10.1002/poc.520

Cited by

  1. Complexation of 4′-Nitrobenzo-15-crown-5 with Zn2+, Mn2+, Cr3+ and Sn4+ Cations in Acetonitrile–Ethanol Binary Mixtures vol.40, pp.8, 2011, https://doi.org/10.1007/s10953-011-9730-2
  2. Solvent influence upon complexation of N-phenylaza-15-crown-5 with UO2 2+ cation in binary mixed non-aqueous solvents vol.72, pp.3-4, 2012, https://doi.org/10.1007/s10847-011-9984-8
  3. Solvatochromic polarity parameters for binary mixtures of 1-butyl-3-methylimidazolium acetate with water, methanol, and dimethylsulfoxide vol.89, pp.10, 2015, https://doi.org/10.1134/S0036024415100167
  4. Solvatochromic effect and kinetics of methyl violet reduction with potassium iodide in water–isopropanol mixtures vol.90, pp.13, 2016, https://doi.org/10.1134/S0036024416130136
  5. Solvatochromic parameters for binary mixtures of an ionic liquid with various protic molecular solvents vol.140, pp.3, 2009, https://doi.org/10.1007/s00706-008-0027-0
  6. Solvent effect on protonation constants of salicylic acid in mixed aqueous organic solutions of DMSO vol.141, pp.4, 2010, https://doi.org/10.1007/s00706-010-0277-5
  7. Solvatochromic Parameters for Binary Mixtures of 1-(1-Butyl)-3-methylimidazolium Tetrafluoroborate with Some Protic Molecular Solvents vol.110, pp.13, 2004, https://doi.org/10.1021/jp0602373