DOI QR코드

DOI QR Code

Factors Affecting the Magnitude of the Metal-Insulator Transition Temperature in AMo4O6 (A=K, Sn)

  • Jung, Dong-Woon (Department of Chemistry and Institute of Basic Natural Science, Wonkwang University) ;
  • Choi, Kwang-Sik (Department of Chemistry and Institute of Basic Natural Science, Wonkwang University) ;
  • Kim, Sung-Jin (Department of Chemistry, Ewha University)
  • Published : 2004.07.20

Abstract

A low-dimensional metal frequently exhibits a metal-insulator transition through a charge-density-wave (CDW) or a spin-density-wave (SDW) which accompany it's structural changes. The transition temperature is thought to be determined by the amount of energy produced during the transition process and the softness of the original structure. $AMo_4O_6$ (A=K, Sn) are known to be quasi-one dimensional metals which exhibit metalinsulator transitions. The difference of the transition temperatures between $KMo_4O_6$ and $SnMo_4O_6$ (A=K, Sn) is examined by investigating their electronic and structural properties. Fermi surface nesting area and the lattice softness are the governing factors to determine the metal-insulator transition temperature in $AMo_4O_6$ compounds.

Keywords

References

  1. Ramanujachary, K. V.; Greenblatt, M.; Jones, E. B.; McCarroll, W. H. J. Solid State Chem. 1993, 102, 69. https://doi.org/10.1006/jssc.1993.1008
  2. Jung, D.; Lee, B.-H.; Kim, S.-J.; Kang, W. Chem. Mater. 2001, 13, 1625. https://doi.org/10.1021/cm000646q
  3. Greenblatt, M.; Vincent, H.; Marezio, M. Low-Dimensional Properties of Molybdenum Bronzes and Oxides; Schlenker, C., Ed.; Kluwer publisher: 1989.
  4. Kang, D.-B. Bull. Korean Chem. Soc. 1995, 16, 929.
  5. Whangbo, M.-H.; Canadell, E. Acc. Chem. Res. 1989, 22, 375. https://doi.org/10.1021/ar00167a001
  6. Wilson, J. A.; DiSalvo, F. J.; Mahajan, S. Adv. Phys. 1975, 24, 117. https://doi.org/10.1080/00018737500101391
  7. Ammeter, J. H.; Burgi, H.-B.; Thibeault, J.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 3686. https://doi.org/10.1021/ja00480a005
  8. Whangbo, M.-H.; Hoffmann, R. J. Am. Chem. Soc., 1978, 100, 6093. https://doi.org/10.1021/ja00487a020
  9. Whangbo, M.-H. J. Chem. Phys. 1979, 70, 4963. https://doi.org/10.1063/1.437387
  10. Whangbo, M.-H. J. Chem. Phys. 1980, 73, 3854. https://doi.org/10.1063/1.440571
  11. Whangbo, M.-H. J. Chem. Phys. 1981, 75, 4983. https://doi.org/10.1063/1.441887
  12. Whangbo, M.-H. Acc. Chem. Res. 1983, 16, 95. https://doi.org/10.1021/ar00087a004
  13. Ashcroft, N. W.; Mermin, N. D. Solid State Physics; Saunders College Publisher: Philadelphia, 1975; p 685.
  14. McMillan, W. L. Phys. Rev. 1968, 167, 331. https://doi.org/10.1103/PhysRev.167.331

Cited by

  1. Unconventional metallic behavior and superconductivity in the K-Mo-O system vol.81, pp.17, 2004, https://doi.org/10.1103/physrevb.81.174532