DOI QR코드

DOI QR Code

Kinetic Studies on the Structure-Reactivity of Aryl Dithiomethylacetates

  • Published : 2004.07.20

Abstract

Kinetic studies of the pyridinolysis $(XC_5H_4N)$ of aryl dithiomethylacetates $(CH_3CH_2C(=S)SC_6H_4Z,\;1)$ are carried out in acetonitrile at $60.0^{\circ}C$. A biphasic Bronsted plot is obtained with a change in slope from a large $({\beta}X\;{\cong}\;0.8)$ to a small $({\beta}X\;{\cong}\;0.2)$ value at $pK_a^{\circ}$ = 5.2, which is attributed to a change in the rate limiting step from breakdown to formation of a zwitterionic tetrahedral intermediate, $T^{\pm}$, in reaction path as the basicity of the pyridine nucleophile increases. This mechanism is supported by the change of the cross-interaction constant ${\rho}xz$ from a large positive ( ${\rho}xz$ = +1.36) for the weakly basic pyridines to a small negative ( ${\rho}_xz$ = -0.22) value for the strongly basic pyridines. The magnitudes of ${\rho}z$ and activation parameters are also consistent with the proposed mechanism.

Keywords

References

  1. Satterthwait, A. C.; Jencks, W. P. J. Am. Chem. Soc. 1974, 96, 7018. https://doi.org/10.1021/ja00829a034
  2. Bond, P. M.; Moodie, R. B. J. Chem.. Soc. Perkin Trans. 2 1976, 679.
  3. Castro, E. A.; Gil, F. J. J. Am. Chem. Soc. 1977, 99, 7611. https://doi.org/10.1021/ja00465a032
  4. Castro, E. A.; Freudenberg, M. J. Org. Chem. 1980, 45, 906. https://doi.org/10.1021/jo01293a027
  5. Castro, E. A.; Ibanez, F.; Lagos, S.; Schick, M.; Santos, J. G. J. Org. Chem. 1992, 57, 2691. https://doi.org/10.1021/jo00035a028
  6. Cox, M. M.; Jencks, W. P. J. Am. Chem. Soc. 1981, 103, 580. https://doi.org/10.1021/ja00393a014
  7. Kovach, I. M.; Belz, M.; Larson, M.; Rousy, S.; Schowen, R. L. J. Am. Chem. Soc. 1985, 107, 7360. https://doi.org/10.1021/ja00311a024
  8. Neuvonen, H. J. Chem. Soc. Perkin Trans. 2 1987, 159.
  9. Castro, E. A.; Ibanez, F.; Salas, M.; Santos, J. G. J. Org. Chem. 1991, 56, 4819. https://doi.org/10.1021/jo00016a002
  10. Castro, E. A.; Salas, M.; Santos, J. G. J. Org. Chem. 1994, 59, 30. https://doi.org/10.1021/jo00080a008
  11. Castro, E. A.; Pizarro, M. I.; Santos, J. G. J. Org. Chem. 1996, 61, 5982. https://doi.org/10.1021/jo960781f
  12. Castro, E. A.; Cubillus, M.; Santos, J. G.; Tellez, J. J. Org. Chem. 1997, 62, 2512. https://doi.org/10.1021/jo961921o
  13. Castro, E. A.; Araneda, C. A.; Santos, J. G. J. Org. Chem. 1997, 62, 126. https://doi.org/10.1021/jo961275t
  14. Oh, H. K.; Shin, C. H.; Lee, I. Bull Korean Chem. Soc. 1995, 16, 657.
  15. Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee, I. New J. Chem. 2001, 25, 317.
  16. Cabrera, M.; Castro, E. A.; Salas, M.; Santos, J. G.; Sepulveda, P. J. Org. Chem. 1991, 56, 5324. https://doi.org/10.1021/jo00018a022
  17. Castro, E. A.; Ibanez, F.; Santos, J. G.; Ureta, C. J. Org. Chem. 1992, 57, 7024. https://doi.org/10.1021/jo00052a010
  18. Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms; Longman: Harlow, 1997; Chapter 7.
  19. Williams, A. Concerted Organic and Bio-organic Mechanism; CRC Press: Boca Raton, 2000.
  20. Castro, E. A. Chem. Rev. 1999, 99, 3505. https://doi.org/10.1021/cr990001d
  21. Um, I. H.; Park, H. R.; Kim, E. Y. Bull. Korean Chem. Soc. 2003, 24, 1251. https://doi.org/10.5012/bkcs.2003.24.9.1251
  22. Um, I. H.; Baek, M. H.; Han, H. J. Bull. Korean Chem. Soc. 2003, 24, 1245. https://doi.org/10.5012/bkcs.2003.24.9.1245
  23. Koh, H. J.; Kang, S. J.; Kim, C. J.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2003, 24, 925. https://doi.org/10.5012/bkcs.2003.24.7.925
  24. Castro, E. A.; Ibanez, F.; Salas, M.; Santos, J. G.; Sepulveda, P. J. Org. Chem. 1993, 58, 459. https://doi.org/10.1021/jo00054a033
  25. Castro, E. A.; Steinfort, G. B. J. Chem. Soc. Perkin Trans. 2 1983, 453.
  26. Castro, E. A.; Leandro, L,; Millan, P.; Santos, J. G. J. Org. Chem. 1999, 64, 1953. https://doi.org/10.1021/jo982063u
  27. Castro, E. A.; Munoz, P.; Santos, J. G. J. Org. Chem. 1999, 64, 8298. https://doi.org/10.1021/jo991036g
  28. Oh, H. K.; Kim, S. K.; Cho, I. H.; Lee, H. W.; Lee, I. J. Chem. Soc. Perkin Trans. 2 2000, 2306.
  29. Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 1996, 61, 3501. https://doi.org/10.1021/jo951726u
  30. Castri, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 1997, 62, 2512. https://doi.org/10.1021/jo961921o
  31. Oh, H. K.; Lee, J. Y.; Yun, J. H.; Park, Y. S.; Lee, I. Int. J. Chem. Kinet. 1998, 30, 419. https://doi.org/10.1002/(SICI)1097-4601(1998)30:6<419::AID-KIN4>3.0.CO;2-V
  32. Castro, E. A.; Ruiz, M.; Salinas, S.; Santos, J. G. J. Org. Chem. 1999, 64, 4817. https://doi.org/10.1021/jo990146k
  33. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 3874. https://doi.org/10.1021/jo025637a
  34. Lee, I. Chem. Soc. Rev. 1990, 19, 317. https://doi.org/10.1039/cs9901900317
  35. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
  36. Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529. https://doi.org/10.1135/cccc19991529
  37. Coetzee, J. F. Prog. Phys. Org. Chem. 1965, 4, 45.
  38. Spillane, W. J.; Hogan, G.; McGrath, P.; King, J.; Brack, C. J. Chem. Soc., Perkin Trans. 2 1996, 2099.
  39. Foroughifar, N.; Leffek, K. T.; Lee, Y. G. Can. J. Chem. 1992, 70, 2856. https://doi.org/10.1139/v92-363
  40. Lee, I.; Kim, C. K.; Han, I. S.; Lee, H. W.; Kim, W. K.; Kim, Y. B. J. Phys. Chem. B 1999, 103, 7302. https://doi.org/10.1021/jp991115w
  41. Williams, A. Concerted Organic and Bio-organic Mechanisms; CRC Press: Boca Raton, 2000.
  42. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6963. https://doi.org/10.1021/ja00463a032
  43. Castro, E. A. Chem. Rev. 1999, 99, 3505. https://doi.org/10.1021/cr990001d
  44. Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 1999, 64, 6342. https://doi.org/10.1021/jo990531+
  45. Koh, H. J.; Han, K. L.; Lee, I. J. Org. Chem. 1999, 64, 4783. https://doi.org/10.1021/jo990115p
  46. Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee, I. J. Chem. Soc. Perkin Trans. 2 2001, 1753.
  47. Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee, I. New J. Chem. 2001, 25, 313. https://doi.org/10.1039/b006974o
  48. Oh, H. K.; Kim, S. K.; Cho, I. H.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 2000, 2306.
  49. Oh, H. K.; Kim, S. K.; Lee, I. Bull. Korean Chem. Soc. 1999, 20, 1418.
  50. Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org. Chem. 1997, 62, 5780. https://doi.org/10.1021/jo970413r
  51. Castro, E. A.; Ibanez, F.; Salas, M.; Santos, J. G.; Sepulveda, P. J. Org. Chem. 1993, 58, 459. https://doi.org/10.1021/jo00054a033
  52. Castro, E. A.; Ureta, C. J. Chem. Soc., Perkin Trans. 2 1991, 63.
  53. Oh, H. K.; Shin, C. H.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1995, 1169.
  54. Lee, I.; Koh, H. J. New. J. Chem. 1996, 20, 131.

Cited by

  1. Kinetics and Mechanism of the Pyridinolysis of Methyl Phenyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1945
  2. Pyridinolysis of Dicyclohexyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.2109
  3. Pyridinolysis of Diisopropyl Chlorophosphate in Acetonitrile vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3505
  4. Pyridinolysis of Bis(N,N-dimethylamino) Phosphinic Chloride in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.309
  5. Pyridinolysis of Dipropyl Chlorothiophosphate in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.325
  6. Kinetics and Mechanism of the Anilinolysis of Aryl Ethyl Isothiocyanophosphates in Acetonitrile vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1829
  7. Concurrent primary and secondary deuterium kinetic isotope effects in anilinolysis of O-aryl methyl phosphonochloridothioates vol.7, pp.14, 2009, https://doi.org/10.1039/b903148k
  8. Kinetics and Mechanism of the Addition of Benzylamines to α-Cyano-β-phenylacrylamides in Acetonitrile vol.26, pp.6, 2004, https://doi.org/10.5012/bkcs.2005.26.6.935
  9. Kinetic Studies on the Structure-Reactivity Correlation of Aryl N-Phenyl Thioncarbamates vol.27, pp.1, 2004, https://doi.org/10.5012/bkcs.2006.27.1.143
  10. Kinetic Evidence for Hypervalent Intermediate in Acid Hydrolysis of N-Arylbenzenesulfinamides vol.27, pp.6, 2004, https://doi.org/10.5012/bkcs.2006.27.6.941
  11. Kinetics and Mechanism of the Aminolysis of Thiophenyl Cyclohexanecarboxylates vol.30, pp.10, 2004, https://doi.org/10.5012/bkcs.2009.30.10.2453
  12. Kinetics and mechanism of the pyridinolysis of N‐aryl‐P,P‐diphenyl phosphinic amides in dimethyl sulfoxide vol.24, pp.6, 2011, https://doi.org/10.1002/poc.1788
  13. Kinetics and Mechanism of the Pyridinolysis of Bis(2,6-dimethylphenyl) Chlorophosphate in Acetonitrile vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4179
  14. Kinetics and Mechanism of the Pyridinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.12, 2004, https://doi.org/10.5012/bkcs.2011.32.12.4387
  15. Kinetics and Mechanism of the Pyridinolysis of Aryl Phenyl Chlorothiophosphates in Acetonitrile vol.32, pp.4, 2004, https://doi.org/10.5012/bkcs.2011.32.4.1138
  16. Kinetics and Mechanism of the Benzylaminolysis of O,O-Diethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3587
  17. Pyridinolysis of Dibutyl Chlorothiophosphate in Acetonitrile vol.33, pp.3, 2012, https://doi.org/10.5012/bkcs.2012.33.3.1085
  18. Kinetics and Mechanism of the Pyridinolysis of Diisopropyl Chlorothiophosphate in Acetonitrile vol.33, pp.10, 2004, https://doi.org/10.5012/bkcs.2012.33.10.3203
  19. Kinetics and Mechanism of Pyridinolyses of Aryl Methyl and Aryl Propyl Chlorothiophosphates in Acetonitrile vol.35, pp.2, 2014, https://doi.org/10.5012/bkcs.2014.35.2.483
  20. Kinetics and Mechanism of Pyridinolysis of O,O-Diethyl S-Aryl Phosphorothioates vol.35, pp.5, 2014, https://doi.org/10.5012/bkcs.2014.35.5.1329