Kinetic Studies on the Structure-Reactivity of Aryl Dithiomethylacetates

Hyuck Keun Oh,* Jie Eun Park, and Hai Whang Lee*

Department of Chemistry, Chonbuk National University, Chonju 561-756, Korea *Department of Chemistry, Inha University, Inchon 402-751, Korea Received April 8, 2004

Kinetic studies of the pyridinolysis (XC₅H₄N) of aryl dithiomethylacetates (CH₃CH ₂C(=S)SC₆H₄Z, 1) are carried out in acetonitrile at 60.0 °C. A biphasic Brönsted plot is obtained with a change in slope from a large ($\beta_X \cong 0.8$) to a small ($\beta_X \cong 0.2$) value at $pK_a^\circ = 5.2$, which is attributed to a change in the rate limiting step from breakdown to formation of a zwitterionic tetrahedral intermediate, T⁺, in reaction path as the basicity of the pyridine nucleophile increases. This mechanism is supported by the change of the cross-interaction constant ρ_{NZ} from a large positive ($\rho_{NZ} = +1.36$) for the weakly basic pyridines to a small negative ($\rho_{NZ} = -0.22$) value for the strongly basic pyridines. The magnitudes of ρ_Z and activation parameters are also consistent with the proposed mechanism.

Key Words : Nucleophilic substitution reaction, Pyridinolysis, Cross-interaction constant, Zwitterionic tetrahedral intermediate, Stepwise mechanism

Introduction

The mechanisms of the aminolysis of aryl esters and carbonates have been well established.¹ These reactions are known to proceed stepwise through a zwitterionic tetrahedral intermediate, T[⊥]. The existence of the intermediate has been deduced from curved Brönsted-type plots. A biphasic dependence of the rate on the amine basicity showing a change of slope from a large ($\beta_{nuc} \ge 0.8$) to a small ($\beta_{nuc} \approx 0.1$ -0.3) value at pK_n° , where the amine and leaving group have the same expulsion rates from T[±], has been attributed to a change in the rate-limiting step from breakdown to formation of a tetrahedral intermediate as the basicity of the amine increases.²⁻⁵

The aminolysis of dithio esters and carbonates has been studied in aqueous and acctonitrile solutions.⁶ An important advantage of using an acctonitrile medium is that there are no complications arising from a kinetically important proton transfer from T^{\pm} to the amine.⁷ In water, the rate of proton transfer, $k_{\rm H}$, may be faster than that of expulsion of arenethiolate from T^{\pm} so that the rate law becomes complex.⁷ This kinetic complexity encountered in the aminolysis of dithiocarboxylates (and also thiono) compounds in water is known to originate from the weak π bond energy of CS (compared to CO) which causes the difficulty in reforming the CS double bond when T^{\pm} break down expelling either the amine or ArS⁻.⁷

$$R-C-SLZ + NX \xrightarrow{k_{a}} R-C-SLZ$$

$$T^{\perp} \qquad (1)$$

$$R-C-SLZ + R+R-R-SLZ$$

$$R-C-SLZ + R+R-R-SLZ$$

$$R-C-N^{+}X + SLZ$$

The breakpoint, pK_a° , has been shown to depend on various factors which influence the relative rates of expulsion of the nucleophile, amine, (k_{a}) and leaving group (k_b) from a tetrahedral intermediate,^{8,9} k_{a}/k_b in eq. (1). Keeping other conditions constants the breakpoint, pK_a° , occurs at a lower pK_a value due to a decrease in k_{-a}/k_b : (i) as the leaving ability of SLZ increases,¹⁰ (ii) as the nonleaving R becomes stronger electron donating group,¹¹ (large k_b), (iii) as the amine nature changes successively from a primary (*e.g.* benzylamine) \rightarrow secondary (alicyclic) \rightarrow aniline \rightarrow pyridine¹² (successive decreases in k_{-a}/k_b), (iv) by substituents of S for O in T¹, *i.e.*, for thiono than carbonyl esters,¹³ (decrease in k_{-a} more than k_b), (v) in aqueous than aprotic solvent¹⁴ (decrease in k_{-a}).

X = 4-CH₃O, 4-CH₃, 3-CH₃, 4-C₆H₅CH₂, H, 3-C₆H₅, 3-CH₃CO, 3-Cl, 4-CH₃CO, 4-CN, and 3-CN Z = 4-CH₃, H, 4-Cl, and 4-Br

In this work, we report the result of kinetic studies on the pyridinolysis of aryl dithiomethylacetates in acetonitrile at 60.0 °C, eq. (2). The aim is to complete the previous studies¹⁵ on the aminolysis mechanism of aryl dithiomethylacetates and to further clarify the influence of the amine nature on the pK_a° value. As an additional criterion for the elucidation of the mechanism, we determined the cross-interaction constant,¹⁶ ρ_{XZ} in eqs. (3a) and (3b), where X and Z represent substituents in the nucleophile and leaving group, respectively.

$$\log(k_{\rm XZ}/k_{\rm HH}) = \rho_{\rm X}\sigma_{\rm X} + \rho_{\rm Z}\sigma_{\rm Z} + \rho_{\rm XZ}\sigma_{\rm X}\sigma_{\rm Z}$$
(3a)

^{&#}x27;Corresponding Author. e-mail: ohkeun@chonbuk.ac.kr

Table 1. The Second Order Rate Constants. k_N (× 10³ M⁻¹ s⁻¹), and Selectivity Parameters." ρ_X , ρ_Z , ρ_{XZ} , β_X , for the Reaction of Z-Phenyl Dithiomethy lacetates with X-Pyridines in Acetonitrile at 60.0 °C

х	рК _а	Z				o #
		4-CH3	Н	4-Cl	4-B r	P7.
4-CH ₃ O	6.47	5.57	7.89	11.3	14.1	0.89 ± 0.14
4-CH ₃	6.00	4.27	6.05	8.43	10.5	0.85 ± 0.13
3-CH3	5.68	3.41	4.75	6.79	8.29	0.86 ± 0.12
$4-C_6H_5CH_2$	5.59	3.29	4.58	6.42	7.92	0.85 ± 0.12
H	5.17	2.74	3.79	5.19	6.44	0.82 ± 0.13
3-C6H5	4.87	1.33	2.25	3.42	4.51	1.16 ± 0.17
3-CH₃CO	3.26	0.0571	0.119	0.207	0.335	1.64 ± 0.30
3-Cl	2.84	0.0427	0.0855	0.154	0.250	1.65 ± 0.30
4-CH3CO	2.38	0.0142	0.0267	0.0523	0.0830	1.67 ± 0.28
4-CN	1.90	0.00427	0.00785	0.0159	0.0281	1.76 ± 0.35
3-CN	1.45	0.00208	0.00468	0.00909	0.0139	1.81 ± 0.26
$\rho_{\mathrm{X}}{}^{b,c}$		-1.12 ± 0.04	-1.17 ± 0.04	-1.21 ± 0.08	-1.23 ± 0.06	$ ho_{ m XZ}{}^{b_J}$ =-0.22
${oldsymbol{eta}}_{\mathrm{N}}^{b,d}$		0.24 ± 0.14	0.25 ± 0.01	0.26 ± 0.01	0.27 ± 0.01	
$ ho_{\mathrm{N}}^{c,f}$		-4.30 ± 0.18	$\textbf{-4.13} \pm 0.11$	$\textbf{-3.89} \pm 0.09$	$\textbf{-3.67} \pm 0.09$	$\rho_{\rm XZ}^{c,i} = \cdot 1.36$
$\beta_{\mathrm{N}}^{\mathrm{c},\mathrm{g}}$		0.82 ± 0.02	0.78 ± 0.02	0.74 ± 0.02	0.71 ± 0.03	

"The *s* values were taken from C. Hansch, A. Leo, and R. W. Taft, *Chem. Rev.* **1991**, *91*, 165. The pK_a values of pyridine in water at 25 °C were taken from: (a) Albert, A.; Serjeant, E. P. *The determination of tonization Constants*; 3rd ed.; Chapman and Hall: New York, 1984; pp 154-155. (b) Dean, J. A. *Handbook of Organic Chemistry*: McGraw-Hill: New York, 1987; Chapter 8. (c) Fischer, A.; Galloway, J. A.; Vaughan, J. *J. Chem. Soc.* **1964**, 3591. (d) The pK_a values of X=3-C_AH₅ and X=4-CH₃CO were taken from ref 25. ^{*h*}For X=4-CH₃O, 4-CH₃, 4-C_AH₅CH₂, and H 'Correlation coefficients are better than 0.996 in all cases. ^{*d*}Correlation coefficients are better than 0.996 in all cases. ^{*h*}Correlation coefficients are better than 0.996 in all cases. ^{*h*}Correlation coefficients are better than 0.996 in all cases. ^{*h*}Correlation coefficients are better than 0.996 in all cases. ^{*h*}Correlation coefficients are better than 0.996 in all cases. ^{*h*}Correlation coefficients are better than 0.996 in all cases. ^{*h*}Correlation coefficients are better than 0.996 in all cases. ^{*h*}Correlation coefficients are better than 0.996 in all cases. ^{*h*}Correlation coefficients are better than 0.996 in all cases. ^{*h*}Correlation coefficients are better than 0.996 in all cases. ^{*h*}Correlation coefficients are better than 0.996 in all cases. ^{*h*}Correlation coefficients are better than 0.996 in all cases. ^{*h*}Correlation coefficients are better than 0.996 in all cases. ^{*h*}Correlation coefficients are better than 0.996 in all cases. ^{*h*}Correlation coefficients are better than 0.995.

$$\rho_{\rm NZ} = \partial \rho_{\rm X} / \partial \sigma_{\rm Z} = \partial \rho_{\rm Z} / \partial \sigma_{\rm X} \tag{3b}$$

Results and Discussion

The rate law obtained in the present reactions is given by eqs. (4) and (5), where ArS^- is the leaving group, k_{obs} is the pseudo-first-order rate constant, k_0 and k_{λ} are the rate constants for solvolysis and pyridinolysis of the substrate, respectively, and [Py] and [S] represent the pyridine and substrate concenturations, respectively. The value of k_0 was negligible in acetonitrile, $k_0 \equiv 0$.

$$d[ArS^{-}]/dt = k_{obs}[S]$$
(4)

$$|k_{\rm obs} - k_0 \perp k_{\rm N} |\mathbf{P}\mathbf{y}| \tag{5}$$

The second-order rate constants for pyridinolysis (k_N) were obtained as the slopes of plots of eq. (5). These values, together with those of the p K_a of the conjugate acids of the pyridines, are summarized in the Table 1. The rate of aryl dithiomethylacetate with pyridine nucleophiles ($e.g. k_N = 3.79 \times 10^{-3} \text{ M}^{-1} \text{s}^{-1}$ at 60.0 °C with Z = H) are slower than aryl dithioacetate with pyridine ($k_N = 5.08 \times 10^{-3} \text{ M}^{-1} \text{s}^{-1}$ at 60.0 °C with Z = H) are slower than aryl dithioacetate with pyridine ($k_N = 5.08 \times 10^{-3} \text{ M}^{-1} \text{s}^{-1}$ at 60.0 °C with Z = H). The higher rates observed with CH₃ than C₂H₅ can be explained by the steric effect of the ethyl group. The Brönsted plots using the k_N and p K_a values in Table 1 were obtained as presented in Figure 1. The slopes are collected in Table 1, where the Hammett coefficients, $\rho_{XC} = \rho_{\text{nuc}}$) and $\rho_Z (=\rho_{\text{Ig}})$, and the cross-interaction constant, ρ_{XZ} , are also presented. Close examination of ρ and β values, shows that the magnitude of ρ_X and β_X are somewhat larger

Figure 1. Brönsted plots for the reactions of Z-aryl dithiomethylacetates with X-Pyridines in acetonitrile at 60.0 °C.

with CH₃ than that with C₂H₅. These differences reflect that the TS with CH₃ is somewhat tighter than that with C₂H₅. Although the β_X values are based on the plots of log k_N (MeCN) vs pK_a (H₂O), they can provide reasonable guides since a near constant ΔpK_a (= pK_a (MeCN) – pK_a (H₂O) \equiv 7.5) was experimentally¹⁷ as well as theoretically¹⁸ found and the slopes will remain practically the same irrespective of whether pK_a (H₂O) or pK_a (MeCN) is used in the Brönsted correlation. We note that the Brönsted plots in Figure 1 are biphasic with a change in the slope. For Z = H the slope changes from $\beta_{\rm N} = 0.78$ to 0.25 at the breakpoints p $K_{\rm a}^{\circ} = 5.2$ as the basicity of pyridine increases. The magnitude of $\beta_{\rm N}$ is somewhat smaller than those $(\beta_{\rm N} \ge 0.8)^{19}$ normally obtained but is well within the range ($\beta_{\rm N} \ge 0.7$ -0.8 in water²⁰ and 0.6-0.7 in acetonitrile²¹) of the corresponding values for the stepwise reactions with rate-limiting expulsion of leaving group. For example, in the aminolvsis of ethyl S-aryl thiolcarbonates with secondary alicyclic amines in water the slopes were $\beta x = 0.7 \cdot 0.8^{20}$ and in the pyridinolysis of Sphenyl 4-nitrobenzoates in acetonitrile the slopes were $\beta x =$ 0.6-0.7,²¹ both which were consistent with a stepwise mechanism where the breakdown of a zwitterionic tetrahedral intermediate, T^{\pm} , is rate-determining. The $\beta x = 0.25$ obtained for more basic pyridines in Table 1 is also consistent with a stepwise mechanism in which the formation of T⁼ is rate-limiting.^{19a} In the pyridinolysis of arvl dithioacetates, $CH_3C(=S)SC_6H_4Z$, a biphasic plot with a change of slope from $\beta x \equiv 0.9$ to a small value of $\beta x \equiv 0.4$ was observed with a breakpoint at $pK_a^{\circ} = 5.2^{22}$

On the other hand, in the reactions of 1 the βx values were 1.5-2.8 and 0.9-1.2 with benzylamines (at -35.0 °C) and anilines (at 45.0 °C), respectively¹⁵ and no breakpoints were observed. This means that the breakpoints are at $pK_a^{\circ} \ge 9.7$ (the highest pK_a used: 4-methoxybenzylamine) and pK_a^o \geq 5.4 (the highest pK_a used: 4-methoxyaniline) for the reactions with benzylamines and anilines, respectively. The decreasing pK_a^{o} value which is related to the decrease in the k_{-a}/k_{b} ratio in the order benzylamine (≥ 9.7) > aniline (≥ 5.4) > pyridine (=5.2) is consistent with the general sequence of the rate of amine expulsion (k_{a}) from the tetrahedral intermediate, primary amines > secondary alicyclic amines > anilines > pyridines.²³ For the aminolysis of 1 the breakpoint, $pK_a^{\circ}(=5.2)$, can be experimentally observed only in the reactions with pyridines since the pK_a° value is higher than the basicities of amines used in the reactions with benzylamines and anilines. This is why a biphasic plots with a clear-cut breakpoint. pK_a° , is often observed in the aminolysis with pyridine nucleophiles, as in the pyridinolysis of aryl dithioacetates²¹ and aryl dithiomethylacetates in this work, both at $pK_a^{\circ} = 5.2$. There are other reasons of the relatively low pK_a° value (=5.2) for the two pyridinolysis of the dithio series: (i) Thiono (S^{-}) rather than carbonyl (O^{-}) series leads to a lower pK_a° due to a decrease in the k_a/k_b ratio, since the lower proclivity of S⁻ than O⁻ in T[±] to form a double bond and expel a leaving group leads to a slower amine expulsion from $T^{=}$ (smaller k_{-a}) relative to ArS⁻ leaving (k_b) .¹ For example, the reactions of benzylamines with S-phenyl acetates.²⁴ CH₃C(=O)SC₆H₄Z, in acetonitrile proceed by a stepwise mechanism with rate-limiting expulsion of $ZC_6H_4S^-$ leaving group ($pK_a^{\circ} \ge 9.7$) from T⁼ but those with any dithioacetates. $CH_3C(=S)SC_6H_4Z$ (2). proceed by rate-limiting formation of $T^{\pm 25}$ (p $K_a^{\circ} \le 9.14$; the lowest pK_a used: 4-chlorobenzylamine) (ii) Thiophenoxide leaving groups (ZC₆H₄S⁻) used have lower basicities than phenoxide leaving groups $(ZC_6H_4O^-)$ for the same Z. and hence k_b should be greater (decrease in k_{-a}/k_b) leading to a lower pK_a° than the corresponding esters with a phenoxide

leaving group.26

In contrast there are also other factors in favor of a higher pK_a° for the present reaction series: (i) Aprotic solvent, MeCN, favors amine expulsion (larger k_{-a}) to form ester compared to aqueous solution by stabilizing the TS for the breakdown of T[±] to form uncharged products relative to that for the formation of anionic leaving group and cationic amide.¹⁴ This will raise the k_{-a}/k_{b} ratio and hence leads to a higher pK_a° value, (ii) An electron donating acyl group. R, results in a rate increase²⁷ in the stepwise reactions where leaving group expulsion is rate-determining, but favors the expulsion of amine relative to thiophenoxide anion, *i.e.*, k_{-a}/k_{b} increase.¹¹ In the reactions of aryl dithio series, $RC(=S)SC_6H_4Z$, with anilines, $R = C_2H_5$ renders a greater rate, $k_{\rm N} = 3.19 \times 10^{-3} \,{\rm M}^{-1}{\rm s}^{-1}$ (Z = H), at 45.0 °C relative to R = CH₃ ($k_{\rm N}$ = 9.46 × 10⁻⁴ M⁻¹s⁻¹ at 50.0 °C, Z = H) and R = C_6H_5 ($k_N = 2.85 \times 10^{-3} \text{ M}^{-1}\text{s}^{-1}$ at 55.0 °C, Z = H).¹⁵ This means that the ethyl group is a stronger electron acceptor than either R = CH₃ or C₆H₅ group and hence the k_{-a}/k_{b} ratio should be greater with a higher pK_a° value than that for the arvl dithio series with $R = CH_3$ and C_6H_5 . This is indeed evidenced by the mechanistic change over from rate-limiting breakdown of T⁼ with anilines to a stepwise mechanism with rate-limiting formation of $T^{\pm}(i.e., pK_a^{\circ})$ is at lower values) in the aminolysis of the two dithio compounds ($R = CH_3^{25}$ and $C_6H_5^6$) with benzylamines in contrast to no mechanistic change, *i.e.*, the stepwise with rate-limiting breakdown of T⁼, for the aminolysis of ethyl¹⁵ series, with anilines and benzylamines. The pK_{a}° observed (=5.2) is then the consequence of balance between these two opposing effects on the $k_{-a}/k_{\rm b}$ ratio.

The size of ρ_Z in Table 1 also reflects the mechanistic change. The magnitudes of ρ_Z change from larger values. $\rho_Z = 1.2$ -1.8, for less basic pyridines to smaller values. $\rho_Z \approx 0.8$ for more basic pyridines. which is in agreement with the decrease in bond cleavage a the rate-determining step switches from breakdown to formation of the intermediate. Such decrease in the magnitude of the ρ_Z values from large ($\rho_Z = 2.4$ -3.2) to small values ($\rho_Z = 2.3$) with the mechanistic change is also reported in the pyridinolysis of aryl dithioacetates.²² Rough estimate of the $\beta_Z (= \beta_{R_z})$ values shows a decrease from $\beta_Z \approx -0.5$ to 0.3 at the breakpoint in agreement with the change in the rate-determining step.

Another important results that support mechanistic change at $pK_a^{\circ} = 5.2$ from breakdown to formation of T[±] as the basicity of pyridine is increased is a clear-cut change in the cross-interaction constant from a relatively large positive, $\rho_{NZ} = +1.36$. to a small negative value, $\rho_{NZ} = -0.22$, at the breakpoint. Similar changes of the ρ_{NZ} values have been reported for the pyridinolysis of S-phenyl 4-nitrobenzoates.²¹ 4-NO₂C₆H₄C(=O)SC₆H₄Z, and aryl dithioacetates,²⁴ CH₃C(=S)SC₆H₄Z. In the former the ρ_{NZ} value change from +1.41 to 0.32 at $pK_a^{\circ} \approx 4.2$ and in the latter from +1.34 to -0.15 at $pK_a^{\circ} = 5.2$ as the basicity of pyridine is increased. These are of course interpreted to indicate mechanistic changes from breakdown to formation of T⁼. These changes in the ρ_{NZ} values with changes in the mechanism of reaction

Table 2. Activation Parameters^{*a*} for the Reactions of Z-Phenyl Dithiomethylacetates with X-Pyridines in Acetonitrile

X	Z	t (°C)	$k_{\rm N} (\times 10^3 \ { m M}^{-1} { m s}^{-1})$	$\begin{array}{c} \Delta H^{\neq} \\ (\text{kcal mol}^{-1}) \end{array}$	-ΔS [∉] (cal mol ^{-t} K ^{-t})
4-CH ₃ O	4-CH3	60.0 50.0 40.0	5.57 4.09 3.04	5.6	52
4-CH ₃ O	4-Br	60.0 50.0 40.0	14.1 10.5 7.93	5.3	51
3-C1	4-CH3	60.0 50.0 40.0	0.0427 0.0312 0.0228	5.7	62
3-Cl	4-Br	60.0 50.0 40.0	0.250 0.185 0.135	5.8	58

^aCalculated by the Eyring equation. The maximum errors calculated (by the method of K. B. Wiberg, Physical Organic Chemistry, Wiley, New York, 1964. p 378.) are \pm 0.6 kcal mol⁻¹ and \pm 2 e.u. for ΔH^{\pm} and ΔS^{\pm} , respectively.

provide further credence to the cross-interaction constant as a useful mechanistic criterion.

The activation parameters determined with the rate constants at three temperatures are shown in Table 2. The activation enthalpies are low $(\Delta H^{*} \cong 6 \text{ kcal/mol})$. and activation entropies have large negative values $(\Delta S^{*} = -51 \text{ to } -62 \text{ cal mol}^{-1} \text{ K}^{-1})$. The large negative ΔS^{*} values (from -58 to -62 cal mol⁻¹ K⁻¹) for the weakly basic pyridine (X = 3-Cl) are in accord with the rate-limiting expulsion of the leaving group since the soft ArS⁻ groups formed in the TS are solvated by the soft aprotic solvent (MeCN) molecules.

We have confirmed that the aminolysis of aryl dithiomethylacetates in acetonitrile proceeds by a stepwise mechanism through a zwitterionic tetrahedral intermediate, T⁼, with rate-limiting expulsion of the thiophenoxide (ArS⁻) group by observing the breakpoint at $pK_a^{\circ} = 5.2$ due to change in the rate-limiting step associated with the intermediate, T⁼. The relatively low pK_a° value is ascribed to the stability of the tetrahedral intermediate where the decrease in k_{-a} is greater than that in k_b with Y = S relative to that with Y = O. The mechanistic change from rate-limiting expulsion of the leaving group from T[±] to formation of the intermediate is well defined by a change in the crossinteraction constants ρ_{XZ} from a large positive value (+1.36) to a small negative value (-0.22).

Experimental Section

Materials. Merk GR acetonitrile was used after three distillations. The pyridine nucleophiles, Aldrich GR. were used without further purification.

Substrates. Preparations and analytical data are reported elsewhere. 15

Kinetic measurement. Rates were measured conductometrically in acetonitrile. The conductivity bridge used in this work was a homemade computer-automatic A/D converter conductivity bridge. Pseudo-first-order rate constants, k_{obs} , were determined by the Guggenheim method with large excess of pyridine (Py). Second order rate constants. k_2 , were obtained from the slope of a plot of k_{obs} vs [Py] with more than five concentrations of pyridine. The k_2 values in Table 1 are the averages of more than three runs and were reproducible to within $\pm 3\%$.

Product analysis. Substrate, p-bromophenyl dithiomethylacetate (0.05 mole) was reacted with excess 4-picoline (0.5 mole) with stirring for more than 15 half-lives at 60.0 °C in acetonitrile. The salt was filtered and solvent was removed from the precipitate. Analysis of the product gave the following results.

CH₃CH₂C(=S)N⁺C₈H₄-*p***-CH₃-SC₆H₄-4-Br:** m.p. 58-61 °C, ¹H NMR (400 MHz. CDCl₃), 2.35 (3H, s. CH₃). 2.91 (1H. q, CH₂). 7.31-7.34 (4H, m. phenyl), 8.45-8.85 (4H. m, pyridine): ¹³C NMR (100.4 MHz, CDCl₃), 227.1 (C=S), 135.7, 135.1, 132.4. 132.1. 131.5, 129.4. 123.5. 122.9, 121.5, 26.1 (CH₃): v_{max} (KBr), 1567. 1455 (C=C, phenyl), 1229 (C=S), 855 (C-H. pyridine). 801 (C-H, phenyl); mass, m/z 402 (M⁻). Anal. Calcd for C₁₉H₁₆BrNS₂: C, 56.7; H, 4.01. Found; C, 56.5; H. 4.03.

Acknowledgment. This work was supported by Korea Research Foundation Grant (KRF-2003-002-C00160).

References

- Satterthwait, A. C.; Jeneks, W. P. J. Am. Chem. Soc. 1974, 96, 7018.
- (a) Bond, P. M.; Moodie, R. B. J. Chem., Soc. Perkin Trans. 2 1976, 679. (b) Castro, E. A.; Gil, F. J. J. Am. Chem. Soc, 1977, 99, 7611. (c) Castro, E. A.; Freudenberg, M. J. Org. Chem. 1980, 45, 906. (d) Castro, E. A.; Ibanez, F.; Lagos, S.; Schick, M.; Santos, J. G. J. Org. Chem. 1992, 57, 2691.
- (a) Cox, M. M.; Jencks, W. P. J. Am. Chem. Soc. 1981, 103, 580.
 (b) Kovach, I. M.; Belz, M.; Larson, M.; Rousy, S.; Schowen, R. L. J. Am. Chem. Soc. 1985, 107, 7360. (c) Neuvonen, H. J. Chem. Soc. Perkin Trans. 2 1987, 159.
- (a) Castro, E. A.; Ibanez, F.; Salas, M.; Santos, J. G. J. Org. Chem. 1991, 56, 4819. (b) Castro, E. A.; Salas, M.; Santos, J. G. J. Org. Chem. 1994, 59, 30.
- (a) Castro, E. A.: Pizarro, M. I.; Santos, J. G. J. Org. Chem. 1996.
 61, 5982. (b) Castro, E. A.: Cubillus, M.; Santos, J. G.; Tellez, J. J. Org. Chem. 1997. 62, 2512. (c) Castro, E. A.: Araneda, C. A.; Santos, J. G. J. Org. Chem. 1997, 62, 126.
- (a) Oh, H. K.; Shin, C. H.; Lee, I. Bull Korean Chem. Soc. 1995.
 16, 657. (b) Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee, I. New J. Chem. 2001, 25, 317.
- (a) Cabrera, M.; Castro, E. A.; Salas, M.; Santos, J. G.; Sepulveda, P. J. Org. Chem. 1991, 56, 5324. (b) Castro, E. A.; Ibanez, F.; Santos, J. G.; Ureta, C. J. Org. Chem. 1992, 57, 7024.
- (a) Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms. Longman: Harlow, 1997: Chapter 7. (b) Williams, A. Concerted Organic and Bio-organic Mechanism: CRC Press: Boca Raton, 2000.
- (a) Castro, E. A. Chem. Rev. 1999, 99, 3505. (b) Um, I. H.; Park, H. R.; Kim, E. Y. Bull. Korean Chem. Soc. 2003, 24, 1251. (c) Um, I. H.; Baek, M. H.; Han, H. J. Bull. Korean Chem. Soc. 2003, 24, 1245. (d) Koh, H. J.; Kang, S. J.; Kim, C. J.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2003, 24, 925.
- Castro, E. A.; Ibanez, F.; Salas, M.; Santos, J. G.; Sepulveda, P. J. Org. Chem. 1993, 58, 459.

Kinetic Studies on the Structure-Reactivity of Aryl Dithiomethylacetates

Bull. Korean Chem. Soc. 2004, Vol. 25, No. 7 1045

- Castro, E. A.: Steinfort, G. B. J. Chem. Soc. Perkin Trans. 2 1983, 453.
- (a) Castro, E. A.; Leandro, L.; Millan, P.; Santos, J. G. J. Org. Chem. 1999, 64, 1953. (b) Castro, E. A.; Munoz, P.; Santos, J. G. J. Org. Chem. 1999, 64, 8298. (c) Oh. H. K.; Kim, S. K.; Cho, I. H.; Lee, H. W.; Lee, I. J. Chem. Soc. Perkin Trans. 2 2000, 2306.
- (a) Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 1996, 61, 3501. (b) Castri, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 1997, 62, 2512.
- (a) Oh, H. K.; Lee, J. Y.; Yun, J. H.; Park, Y. S.; Lee, I. Int. J. Chem. Kinet. 1998, 30, 419. (b) Castro, E. A.; Ruiz, M.; Salinas, S.; Santos, J. G. J. Org. Chem. 1999, 64, 4817.
- Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 3874.
- (a) Lee, I. Chem. Soc. Rev. 1990, 19, 317. (b) Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57. (c) Lee, I.: Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529.
- (a) Coetzee, J. F. Prog. Phys. Org. Chem. 1965, 4, 45. (b) Spillane,
 W. J.; Hogan, G.; McGrath, P.; King, J.; Brack, C. J. Chem. Soc.,
 Perkin Trans. 2 1996, 2099. (c) Foroughifar, N.; Leffek, K. T.;
 Lee, Y. G. Can. J. Chem. 1992, 70, 2856.
- 18. Lee, I.; Kim, C. K.; Han, I. S.; Lee, H. W.; Kim, W. K.; Kim, Y. B.

J. Phys. Chem. B 1999, 103, 7302.

- (a) Williams, A. Concerted Organic and Bio-organic Mechanisms: CRC Press: Boca Raton. 2000. (b) Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977. 99, 6963. (c) Castro, E. A. Chem. Rev. 1999, 99, 3505.
- Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 1999, 64, 6342.
- 21. Koh, H. J.; Han, K. L.; Lee, I. J. Org. Chem. 1999, 64, 4783.
- (a) Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee, I. J. Chem. Soc. Perkin Trans. 2 2001, 1753. (b) Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee, I. New J. Chem. 2001, 25, 313.
- 23. Oh, H. K.; Kim, S. K.; Cho, I. H.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 2000, 2306.
- Oh, H. K.; Kim, S. K.; Lee, I. Bull. Korean Chem. Soc. 1999, 20, 1418.
- Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org. Chem. 1997, 62, 5780.
- (a) Castro, E. A.; Ibanez, F.; Salas, M.; Santos, J. G.; Sepulveda, P. J. Org. Chem. 1993, 58, 459. (b) Castro, E. A.; Ureta, C. J. Chem. Soc., Perkin Trans. 2 1991, 63.
- (a) Oh, H. K.; Shin, C. H.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1995, 1169. (b) Lee, I.; Koh, H. J. New, J. Chem. 1996, 20, 131.